benchmark_trainv2.sh 9.23 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
#!/bin/bash
source test_tipc/common_func.sh

LDOUBLEV's avatar
LDOUBLEV committed
4
5
6
7
8
9
10
11
# set env
python=python3.7
export model_branch=`git symbolic-ref HEAD 2>/dev/null | cut -d"/" -f 3`
export model_commit=$(git log|head -n1|awk '{print $2}') 
export str_tmp=$(echo `pip list|grep paddlepaddle-gpu|awk -F ' ' '{print $2}'`)
export frame_version=${str_tmp%%.post*}
export frame_commit=$(echo `${python} -c "import paddle;print(paddle.version.commit)"`)

LDOUBLEV's avatar
LDOUBLEV committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# run benchmark sh 
# Usage:
# bash run_benchmark_train.sh config.txt params

function func_parser_params(){
    strs=$1
    IFS="="
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}

function func_sed_params(){
    filename=$1
    line=$2
    param_value=$3
    params=`sed -n "${line}p" $filename`
    IFS=":"
    array=(${params})
    key=${array[0]}
    value=${array[1]}
    if [[ $value =~ 'benchmark_train' ]];then
        IFS='='
        _val=(${value})
        param_value="${_val[0]}=${param_value}"
    fi
    new_params="${key}:${param_value}"
    IFS=";"
    cmd="sed -i '${line}s/.*/${new_params}/' '${filename}'"
    eval $cmd
}

function set_gpu_id(){
    string=$1
    _str=${string:1:6}
    IFS="C"
    arr=(${_str})
    M=${arr[0]}
    P=${arr[1]}
    gn=`expr $P - 1`
    gpu_num=`expr $gn / $M`
    seq=`seq -s "," 0 $gpu_num`
    echo $seq
}

function get_repo_name(){
    IFS=";"
    cur_dir=$(pwd)
    IFS="/"
    arr=(${cur_dir})
    echo ${arr[-1]}
}

FILENAME=$1
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
69
cp FILENAME as new FILENAME
new_filename="./test_tipc/benchmark_train.txt"
cmd=`yes|cp $FILENAME $new_filename`
FILENAME=$new_filename
LDOUBLEV's avatar
LDOUBLEV committed
70
71
# MODE be one of ['benchmark_train']
MODE=$2
LDOUBLEV's avatar
LDOUBLEV committed
72
PARAMS=$3
LDOUBLEV's avatar
LDOUBLEV committed
73
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt  benchmark_train dynamic_bs8_null_SingleP_DP_N1C1
LDOUBLEV's avatar
LDOUBLEV committed
74
IFS=$'\n'
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
80
81
82
# parser params from train_benchmark.txt
dataline=`cat $FILENAME`
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")

# 获取benchmark_params所在的行数
LDOUBLEV's avatar
LDOUBLEV committed
83
line_num=`grep -n "train_benchmark_params" $FILENAME  | cut -d ":" -f 1`
LDOUBLEV's avatar
LDOUBLEV committed
84
# for train log parser
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
batch_size=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
fp_items=$(func_parser_value "${lines[line_num]}")
LDOUBLEV's avatar
LDOUBLEV committed
88
line_num=`expr $line_num + 1`
LDOUBLEV's avatar
LDOUBLEV committed
89
epoch=$(func_parser_value "${lines[line_num]}")
LDOUBLEV's avatar
LDOUBLEV committed
90

LDOUBLEV's avatar
LDOUBLEV committed
91
line_num=`expr $line_num + 1`
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
profile_option_key=$(func_parser_key "${lines[line_num]}")
profile_option_params=$(func_parser_value "${lines[line_num]}")
profile_option="${profile_option_key}:${profile_option_params}"

line_num=`expr $line_num + 1`
flags_value=$(func_parser_value "${lines[line_num]}")
LDOUBLEV's avatar
LDOUBLEV committed
98
# set flags
LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
103
104
105
IFS=";"
flags_list=(${flags_value})
for _flag in ${flags_list[*]}; do
    cmd="export ${_flag}"
    eval $cmd
done

LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
# set log_name
repo_name=$(get_repo_name )
SAVE_LOG=${BENCHMARK_LOG_DIR:-$(pwd)}   # */benchmark_log
mkdir -p "${SAVE_LOG}/benchmark_log/"
status_log="${SAVE_LOG}/benchmark_log/results.log"
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116

# set eval and export as null
# line eval_py: 24
# line export_py: 30
func_sed_params "$FILENAME" "24" "null"
func_sed_params "$FILENAME" "30" "null"
LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
func_sed_params "$FILENAME" "3"  "$python"

# if params
if  [ ! -n "$PARAMS" ] ;then
    # PARAMS input is not a word.
    IFS="|"
    batch_size_list=(${batch_size})
    fp_items_list=(${fp_items})
    device_num_list=(N1C4)
    run_mode="DP"
    echo "batchsize list: $batch_size_list ${batch_size_list[1]}"
    echo "fp_item_lists: $fp_items_list ${fp_items_list[1]}"
else
    # parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_process_type}_${run_mode}_${device_num}
    IFS="_"
    params_list=(${PARAMS})
    model_type=${params_list[0]}
    batch_size=${params_list[1]}
    batch_size=`echo  ${batch_size} | tr -cd "[0-9]" `
    precision=${params_list[2]}
    run_process_type=${params_list[3]}
    run_mode=${params_list[4]}
    device_num=${params_list[5]}
LDOUBLEV's avatar
LDOUBLEV committed
140
141
    IFS=";"

LDOUBLEV's avatar
LDOUBLEV committed
142
143
144
    if [ ${precision} = "null" ];then
        precision="fp32"
    fi
LDOUBLEV's avatar
LDOUBLEV committed
145

LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
    fp_items_list=($precision)
    batch_size_list=($batch_size)
    device_num_list=($device_num)
LDOUBLEV's avatar
LDOUBLEV committed
149
150
fi

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
IFS="|"
for batch_size in ${batch_size_list[*]}; do 
    for precision in ${fp_items_list[*]}; do
        for device_num in ${device_num_list[*]}; do
            echo "for $batch_size $precision $device_num $epoch"
            # sed batchsize and precision
            func_sed_params "$FILENAME" "6" "$precision"
            func_sed_params "$FILENAME" "9" "$MODE=$batch_size"
            func_sed_params "$FILENAME" "7" "$MODE=$epoch"
            gpu_id=$(set_gpu_id $device_num)

            if [ ${#gpu_id} -le 1 ];then
                run_process_type="SingleP"
                log_path="$SAVE_LOG/profiling_log"
                mkdir -p $log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_profiling"
                func_sed_params "$FILENAME" "4" "0"  # sed used gpu_id 
                # set profile_option params
                echo "profile_option: ${profile_option}"
                tmp=`sed -i "13s/.*/${profile_option}/" "${FILENAME}"`

                # run test_train_inference_python.sh
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                eval $cmd
                eval "cat ${log_path}/${log_name}"

                # without profile
                log_path="$SAVE_LOG/train_log"
                speed_log_path="$SAVE_LOG/index"
                mkdir -p $log_path
                mkdir -p $speed_log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
                speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
                func_sed_params "$FILENAME" "13" "null"  # sed profile_id as null
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                job_bt=`date '+%Y%m%d%H%M%S'`
                eval $cmd
                job_et=`date '+%Y%m%d%H%M%S'`
                export model_run_time=$((${job_et}-${job_bt}))
                eval "cat ${log_path}/${log_name}"

                # parser log
                _model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
                cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
                        --speed_log_file '${speed_log_path}/${speed_log_name}' \
                        --model_name ${_model_name} \
                        --base_batch_size ${batch_size} \
                        --run_mode ${run_mode} \
                        --run_process_type ${run_process_type} \
                        --fp_item ${precision} \
                        --keyword ips: \
                        --skip_steps 2 \
                        --device_num ${device_num} \
                        --speed_unit samples/s \
                        --convergence_key loss: "
                echo $cmd
                eval $cmd
                last_status=${PIPESTATUS[0]}
                status_check $last_status "${cmd}" "${status_log}"
            else
                IFS=";"
                unset_env=`unset CUDA_VISIBLE_DEVICES`
                run_process_type="MultiP"
                log_path="$SAVE_LOG/train_log"
                speed_log_path="$SAVE_LOG/index"
                mkdir -p $log_path
                mkdir -p $speed_log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
                speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
                func_sed_params "$FILENAME" "4" "$gpu_id"  # sed used gpu_id 
                func_sed_params "$FILENAME" "13" "null"  # sed --profile_option as null
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                job_bt=`date '+%Y%m%d%H%M%S'`
                eval $cmd
                job_et=`date '+%Y%m%d%H%M%S'`
                export model_run_time=$((${job_et}-${job_bt}))
                eval "cat ${log_path}/${log_name}"
                # parser log
                _model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
                
                cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
                        --speed_log_file '${speed_log_path}/${speed_log_name}' \
                        --model_name ${_model_name} \
                        --base_batch_size ${batch_size} \
                        --run_mode ${run_mode} \
                        --run_process_type ${run_process_type} \
                        --fp_item ${precision} \
                        --keyword ips: \
                        --skip_steps 2 \
                        --device_num ${device_num} \
                        --speed_unit images/s \
                        --convergence_key loss: "
                echo $cmd
                eval $cmd
                last_status=${PIPESTATUS[0]}
                status_check $last_status "${cmd}" "${status_log}"
            fi
        done
    done
done