rec_sar_head.py 13 KB
Newer Older
andyjpaddle's avatar
andyjpaddle committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F


class SAREncoder(nn.Layer):
    """
    Args:
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
        enc_gru (bool): If True, use GRU, else LSTM in encoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        mask (bool): If True, mask padding in RNN sequence.
    """
    def __init__(self,
                 enc_bi_rnn=False,
                 enc_drop_rnn=0.1,
                 enc_gru=False,
                 d_model=512,
                 d_enc=512,
                 mask=True,
                 **kwargs):
        super().__init__()
        assert isinstance(enc_bi_rnn, bool)
        assert isinstance(enc_drop_rnn, (int, float))
        assert 0 <= enc_drop_rnn < 1.0
        assert isinstance(enc_gru, bool)
        assert isinstance(d_model, int)
        assert isinstance(d_enc, int)
        assert isinstance(mask, bool)

        self.enc_bi_rnn = enc_bi_rnn
        self.enc_drop_rnn = enc_drop_rnn
        self.mask = mask

        # LSTM Encoder
        if enc_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'
        kwargs = dict(
            input_size=d_model,
            hidden_size=d_enc,
            num_layers=2,
            time_major=False,
            dropout=enc_drop_rnn,
            direction=direction
        )
        if enc_gru:
            self.rnn_encoder = nn.GRU(**kwargs)
        else:
            self.rnn_encoder = nn.LSTM(**kwargs)
        
        # global feature transformation
        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
    
    def forward(self, feat, img_metas=None):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]
        
        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
        
        h_feat = feat.shape[2] # bsz c h w
        feat_v = F.max_pool2d(
            feat, kernel_size=(h_feat, 1), stride=1, padding=0
        )
        feat_v = feat_v.squeeze(2) # bsz * C * W
        feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
        holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
        
        if valid_ratios is not None:
            valid_hf = []
            T = holistic_feat.shape[1]
            for i, valid_ratio in enumerate(valid_ratios):
                valid_step = min(T, math.ceil(T * valid_ratio)) - 1
                valid_hf.append(holistic_feat[i, valid_step, :])
            valid_hf = paddle.stack(valid_hf, axis=0)
        else:
            valid_hf = holistic_feat[:, -1, :] # bsz * C
        holistic_feat = self.linear(valid_hf) # bsz * C
        
        return holistic_feat
    

class BaseDecoder(nn.Layer):
    def __init__(self, **kwargs):
        super().__init__()

    def forward_train(self, feat, out_enc, targets, img_metas):
        raise NotImplementedError

    def forward_test(self, feat, out_enc, img_metas):
        raise NotImplementedError

    def forward(self, 
                feat,
                out_enc,
                label=None,
                img_metas=None,
                train_mode=True):
        self.train_mode = train_mode

        if train_mode:
            return self.forward_train(feat, out_enc, label, img_metas)
        return self.forward_test(feat, out_enc, img_metas)


class ParallelSARDecoder(BaseDecoder):
    """
    Args:
andyjpaddle's avatar
andyjpaddle committed
121
        out_channels (int): Output class number.
andyjpaddle's avatar
andyjpaddle committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
        dec_drop_rnn (float): Dropout of RNN layer in decoder.
        dec_gru (bool): If True, use GRU, else LSTM in decoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        d_k (int): Dim of channels of attention module.
        pred_dropout (float): Dropout probability of prediction layer.
        max_seq_len (int): Maximum sequence length for decoding.
        mask (bool): If True, mask padding in feature map.
        start_idx (int): Index of start token.
        padding_idx (int): Index of padding token.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state.
    """

    def __init__(self,
andyjpaddle's avatar
andyjpaddle committed
139
                out_channels, # 90 + unknown + start + padding
andyjpaddle's avatar
andyjpaddle committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                enc_bi_rnn=False,
                dec_bi_rnn=False,
                dec_drop_rnn=0.0,
                dec_gru=False,
                d_model=512,
                d_enc=512,
                d_k=64,
                pred_dropout=0.1,
                max_text_length=30,
                mask=True,
                pred_concat=True,
                **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
andyjpaddle's avatar
andyjpaddle committed
157
158
        self.start_idx = out_channels - 2
	self.padding_idx = out_channels - 1
andyjpaddle's avatar
andyjpaddle committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        self.max_seq_len = max_text_length
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)

        # 2D attention layer
        self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
        self.conv3x3_1 = nn.Conv2D(d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Linear(d_k, 1)

        # Decoder RNN layer
        if dec_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'

        kwargs = dict(
            input_size=encoder_rnn_out_size,
            hidden_size=encoder_rnn_out_size,
            num_layers=2,
            time_major=False,
            dropout=dec_drop_rnn,
            direction=direction
        )
        if dec_gru:
            self.rnn_decoder = nn.GRU(**kwargs)
        else:
            self.rnn_decoder = nn.LSTM(**kwargs)

        # Decoder input embedding
        self.embedding = nn.Embedding(
andyjpaddle's avatar
andyjpaddle committed
192
            self.num_classes, encoder_rnn_out_size, padding_idx=self.padding_idx)
andyjpaddle's avatar
andyjpaddle committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        
        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        pred_num_classes = num_classes - 1
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + d_enc
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, pred_num_classes)

    def _2d_attention(self,
                      decoder_input,
                      feat,
                      holistic_feat,
                      valid_ratios=None):
        
        y = self.rnn_decoder(decoder_input)[0]
        # y: bsz * (seq_len + 1) * hidden_size
        
        attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
        bsz, seq_len, attn_size = attn_query.shape
        attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
        # (bsz, seq_len + 1, attn_size, 1, 1)

        attn_key = self.conv3x3_1(feat)
        # bsz * attn_size * h * w
        attn_key = attn_key.unsqueeze(1)
        # bsz * 1 * attn_size * h * w

        attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
        
        # bsz * (seq_len + 1) * attn_size * h * w
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
        # bsz * (seq_len + 1) * h * w * attn_size
        attn_weight = self.conv1x1_2(attn_weight)
        # bsz * (seq_len + 1) * h * w * 1
        bsz, T, h, w, c = attn_weight.shape
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_weight[i, :, :, valid_width:, :] = float('-inf')

        attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
        attn_weight = F.softmax(attn_weight, axis=-1)
        
        attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
        # attn_weight: bsz * T * c * h * w
        # feat: bsz * c * h * w
        attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False)
        # bsz * (seq_len + 1) * C

        # Linear transformation
        if self.pred_concat:
            hf_c = holistic_feat.shape[-1]
            holistic_feat = paddle.expand(holistic_feat, shape=[bsz, seq_len, hf_c])
            y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
        else:
            y = self.prediction(attn_feat)
        # bsz * (seq_len + 1) * num_classes
        if self.train_mode:
            y = self.pred_dropout(y)
        
        return y

    def forward_train(self, feat, out_enc, label, img_metas):
        '''
        img_metas: [label, valid_ratio]
        '''
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
        
        label = label.cuda()
        lab_embedding = self.embedding(label)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
        # bsz * (seq_len + 1) * C
        out_dec = self._2d_attention(
            in_dec, feat, out_enc, valid_ratios=valid_ratios
        )
        # bsz * (seq_len + 1) * num_classes
        
        return out_dec[:, 1:, :] # bsz * seq_len * num_classes

    def forward_test(self, feat, out_enc, img_metas):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1] 
        
        seq_len = self.max_seq_len
        bsz = feat.shape[0]
        start_token = paddle.full((bsz, ),
                                   fill_value=self.start_idx,
                                   dtype='int64')
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        emb_dim = start_token.shape[1]
        start_token = start_token.unsqueeze(1)
        start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = paddle.concat((out_enc, start_token), axis=1)
        # bsz * (seq_len + 1) * emb_dim

        outputs = []
        for i in range(1, seq_len + 1):
            decoder_output = self._2d_attention(
                decoder_input, feat, out_enc, valid_ratios=valid_ratios
            )
            char_output = decoder_output[:, i, :] # bsz * num_classes
            char_output = F.softmax(char_output, -1)
            outputs.append(char_output)
            max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
            char_embedding = self.embedding(max_idx) # bsz * emb_dim
            if i < seq_len:
                decoder_input[:, i + 1, :] = char_embedding
        
        outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes

        return outputs


class SARHead(nn.Layer):
    def __init__(self, 
andyjpaddle's avatar
andyjpaddle committed
331
		out_channels,
andyjpaddle's avatar
andyjpaddle committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                enc_bi_rnn=False,
                enc_drop_rnn=0.1,
                enc_gru=False,
                dec_bi_rnn=False,
                dec_drop_rnn=0.0,
                dec_gru=False,
                d_k=512,
                pred_dropout=0.1,
                max_text_length=30,
                pred_concat=True,
                **kwargs):
        super(SARHead, self).__init__()

        # encoder module
        self.encoder = SAREncoder(
            enc_bi_rnn=enc_bi_rnn, 
            enc_drop_rnn=enc_drop_rnn, 
            enc_gru=enc_gru)

        # decoder module
        self.decoder = ParallelSARDecoder(
andyjpaddle's avatar
andyjpaddle committed
353
354
            out_channels=out_channels,
	    enc_bi_rnn=enc_bi_rnn,
andyjpaddle's avatar
andyjpaddle committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            dec_bi_rnn=dec_bi_rnn,
            dec_drop_rnn=dec_drop_rnn,
            dec_gru=dec_gru,
            d_k=d_k,
            pred_dropout=pred_dropout,
            max_text_length=max_text_length,
            pred_concat=pred_concat) 
    
    def forward(self, feat, targets=None):
        '''
        img_metas: [label, valid_ratio]
        '''
        holistic_feat = self.encoder(feat, targets) # bsz c
        
        if self.training:
            label = targets[0] # label
            label = paddle.to_tensor(label, dtype='int64')
            final_out = self.decoder(feat, holistic_feat, label, img_metas=targets)
        if not self.training:
            final_out = self.decoder(feat, holistic_feat, label=None, img_metas=targets, train_mode=False)
            # (bsz, seq_len, num_classes)
        
        return final_out
andyjpaddle's avatar
andyjpaddle committed
378