db_postprocess.py 6.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
WenmuZhou's avatar
WenmuZhou committed
21
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
26
27
28
29
30
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

WenmuZhou's avatar
WenmuZhou committed
31
32
33
34
35
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
36
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey committed
37
                 score_mode="fast",
WenmuZhou's avatar
WenmuZhou committed
38
39
40
41
42
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
43
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey committed
44
45
46
47
48
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

WenmuZhou's avatar
WenmuZhou committed
49
50
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
LDOUBLEV's avatar
LDOUBLEV committed
51

WenmuZhou's avatar
WenmuZhou committed
52
    def boxes_from_bitmap(self, pred, _bitmap, shape):
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''
WenmuZhou's avatar
WenmuZhou committed
57
        dest_height, dest_width, ratio_h, ratio_w = shape
LDOUBLEV's avatar
LDOUBLEV committed
58
59
60
        bitmap = _bitmap
        height, width = bitmap.shape

LDOUBLEV's avatar
LDOUBLEV committed
61
62
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
tink2123's avatar
tink2123 committed
63
64
65
66
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69

        num_contours = min(len(contours), self.max_candidates)

WenmuZhou's avatar
WenmuZhou committed
70
71
        boxes = []
        scores = []
LDOUBLEV's avatar
LDOUBLEV committed
72
73
74
75
76
77
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey committed
78
79
80
81
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
86
87
88
89
90
91
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
WenmuZhou's avatar
WenmuZhou committed
92
                np.round(box[:, 0] / ratio_w), 0, dest_width)
LDOUBLEV's avatar
LDOUBLEV committed
93
            box[:, 1] = np.clip(
WenmuZhou's avatar
WenmuZhou committed
94
                np.round(box[:, 1] / ratio_h), 0, dest_height)
WenmuZhou's avatar
WenmuZhou committed
95
96
97
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
LDOUBLEV's avatar
LDOUBLEV committed
98

LDOUBLEV's avatar
LDOUBLEV committed
99
100
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
LDOUBLEV's avatar
LDOUBLEV committed
135
136
137
138
139
140
141
142
143
144
145
146
147
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

WenmuZhou's avatar
WenmuZhou committed
169
170
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
WenmuZhou's avatar
WenmuZhou committed
171
172
173
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
177
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
178
179
180
181
182
183
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
LDOUBLEV's avatar
LDOUBLEV committed
184
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
WenmuZhou's avatar
WenmuZhou committed
185
                                                   shape_list[batch_index])
LDOUBLEV's avatar
LDOUBLEV committed
186

WenmuZhou's avatar
WenmuZhou committed
187
            boxes_batch.append({'points': boxes})
LDOUBLEV's avatar
LDOUBLEV committed
188
        return boxes_batch