kie_sdmgr_head.py 8.02 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
fix  
LDOUBLEV committed
14
# reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/heads/sdmgr_head.py
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class SDMGRHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 num_chars=92,
                 visual_dim=16,
                 fusion_dim=1024,
                 node_input=32,
                 node_embed=256,
                 edge_input=5,
                 edge_embed=256,
                 num_gnn=2,
                 num_classes=26,
                 bidirectional=False):
        super().__init__()

        self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
        self.node_embed = nn.Embedding(num_chars, node_input, 0)
        hidden = node_embed // 2 if bidirectional else node_embed
        self.rnn = nn.LSTM(
            input_size=node_input, hidden_size=hidden, num_layers=1)
        self.edge_embed = nn.Linear(edge_input, edge_embed)
        self.gnn_layers = nn.LayerList(
            [GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
        self.node_cls = nn.Linear(node_embed, num_classes)
        self.edge_cls = nn.Linear(edge_embed, 2)

LDOUBLEV's avatar
LDOUBLEV committed
53
    def forward(self, input, targets):
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        relations, texts, x = input
        node_nums, char_nums = [], []
        for text in texts:
            node_nums.append(text.shape[0])
            char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))

        max_num = max([char_num.max() for char_num in char_nums])
        all_nodes = paddle.concat([
            paddle.concat(
                [text, paddle.zeros(
                    (text.shape[0], max_num - text.shape[1]))], -1)
            for text in texts
        ])
        temp = paddle.clip(all_nodes, min=0).astype(int)
        embed_nodes = self.node_embed(temp)
        rnn_nodes, _ = self.rnn(embed_nodes)

        b, h, w = rnn_nodes.shape
        nodes = paddle.zeros([b, w])
        all_nums = paddle.concat(char_nums)
        valid = paddle.nonzero((all_nums > 0).astype(int))
        temp_all_nums = (
            paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
        temp_all_nums = paddle.expand(temp_all_nums, [
            temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
        ])
        temp_all_nodes = paddle.gather(rnn_nodes, valid)
        N, C, A = temp_all_nodes.shape
        one_hot = F.one_hot(
            temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
        one_hot = paddle.multiply(
            temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
        t = one_hot.expand([N, 1, A]).squeeze(1)
        nodes = paddle.scatter(nodes, valid.squeeze(1), t)

        if x is not None:
            nodes = self.fusion([x, nodes])

        all_edges = paddle.concat(
            [rel.reshape([-1, rel.shape[-1]]) for rel in relations])
        embed_edges = self.edge_embed(all_edges.astype('float32'))
        embed_edges = F.normalize(embed_edges)

        for gnn_layer in self.gnn_layers:
            nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)

        node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
        return node_cls, edge_cls


class GNNLayer(nn.Layer):
    def __init__(self, node_dim=256, edge_dim=256):
        super().__init__()
        self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
        self.coef_fc = nn.Linear(node_dim, 1)
        self.out_fc = nn.Linear(node_dim, node_dim)
        self.relu = nn.ReLU()

    def forward(self, nodes, edges, nums):
        start, cat_nodes = 0, []
        for num in nums:
            sample_nodes = nodes[start:start + num]
            cat_nodes.append(
                paddle.concat([
                    paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
                    paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
                ], -1).reshape([num**2, -1]))
            start += num
        cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
        cat_nodes = self.relu(self.in_fc(cat_nodes))
        coefs = self.coef_fc(cat_nodes)

        start, residuals = 0, []
        for num in nums:
            residual = F.softmax(
                -paddle.eye(num).unsqueeze(-1) * 1e9 +
                coefs[start:start + num**2].reshape([num, num, -1]), 1)
            residuals.append((residual * cat_nodes[start:start + num**2]
                              .reshape([num, num, -1])).sum(1))
            start += num**2

        nodes += self.relu(self.out_fc(paddle.concat(residuals)))
        return [nodes, cat_nodes]


class Block(nn.Layer):
    def __init__(self,
                 input_dims,
                 output_dim,
                 mm_dim=1600,
                 chunks=20,
                 rank=15,
                 shared=False,
                 dropout_input=0.,
                 dropout_pre_lin=0.,
                 dropout_output=0.,
                 pos_norm='before_cat'):
        super().__init__()
        self.rank = rank
        self.dropout_input = dropout_input
        self.dropout_pre_lin = dropout_pre_lin
        self.dropout_output = dropout_output
        assert (pos_norm in ['before_cat', 'after_cat'])
        self.pos_norm = pos_norm
        # Modules
        self.linear0 = nn.Linear(input_dims[0], mm_dim)
        self.linear1 = (self.linear0
                        if shared else nn.Linear(input_dims[1], mm_dim))
        self.merge_linears0 = nn.LayerList()
        self.merge_linears1 = nn.LayerList()
        self.chunks = self.chunk_sizes(mm_dim, chunks)
        for size in self.chunks:
            ml0 = nn.Linear(size, size * rank)
            self.merge_linears0.append(ml0)
            ml1 = ml0 if shared else nn.Linear(size, size * rank)
            self.merge_linears1.append(ml1)
        self.linear_out = nn.Linear(mm_dim, output_dim)

    def forward(self, x):
        x0 = self.linear0(x[0])
        x1 = self.linear1(x[1])
        bs = x1.shape[0]
        if self.dropout_input > 0:
            x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
            x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
        x0_chunks = paddle.split(x0, self.chunks, -1)
        x1_chunks = paddle.split(x1, self.chunks, -1)
        zs = []
        for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
                                      self.merge_linears1):
            m = m0(x0_c) * m1(x1_c)  # bs x split_size*rank
            m = m.reshape([bs, self.rank, -1])
            z = paddle.sum(m, 1)
            if self.pos_norm == 'before_cat':
                z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
                z = F.normalize(z)
            zs.append(z)
        z = paddle.concat(zs, 1)
        if self.pos_norm == 'after_cat':
            z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
            z = F.normalize(z)

        if self.dropout_pre_lin > 0:
            z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
        z = self.linear_out(z)
        if self.dropout_output > 0:
            z = F.dropout(z, p=self.dropout_output, training=self.training)
        return z

    def chunk_sizes(self, dim, chunks):
        split_size = (dim + chunks - 1) // chunks
        sizes_list = [split_size] * chunks
        sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
        return sizes_list