kie_sdmgr_loss.py 4.66 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

LDOUBLEV's avatar
fix  
LDOUBLEV committed
15
# reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/losses/sdmgr_loss.py
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn
import paddle


class SDMGRLoss(nn.Layer):
    def __init__(self, node_weight=1.0, edge_weight=1.0, ignore=0):
        super().__init__()
        self.loss_node = nn.CrossEntropyLoss(ignore_index=ignore)
        self.loss_edge = nn.CrossEntropyLoss(ignore_index=-1)
        self.node_weight = node_weight
        self.edge_weight = edge_weight
        self.ignore = ignore

    def pre_process(self, gts, tag):
        gts, tag = gts.numpy(), tag.numpy().tolist()
        temp_gts = []
        batch = len(tag)
        for i in range(batch):
            num, recoder_len = tag[i][0], tag[i][1]
            temp_gts.append(
                paddle.to_tensor(
                    gts[i, :num, :num + 1], dtype='int64'))
        return temp_gts

    def accuracy(self, pred, target, topk=1, thresh=None):
        """Calculate accuracy according to the prediction and target.

        Args:
            pred (torch.Tensor): The model prediction, shape (N, num_class)
            target (torch.Tensor): The target of each prediction, shape (N, )
            topk (int | tuple[int], optional): If the predictions in ``topk``
                matches the target, the predictions will be regarded as
                correct ones. Defaults to 1.
            thresh (float, optional): If not None, predictions with scores under
                this threshold are considered incorrect. Default to None.

        Returns:
            float | tuple[float]: If the input ``topk`` is a single integer,
                the function will return a single float as accuracy. If
                ``topk`` is a tuple containing multiple integers, the
                function will return a tuple containing accuracies of
                each ``topk`` number.
        """
        assert isinstance(topk, (int, tuple))
        if isinstance(topk, int):
            topk = (topk, )
            return_single = True
        else:
            return_single = False

        maxk = max(topk)
        if pred.shape[0] == 0:
            accu = [pred.new_tensor(0.) for i in range(len(topk))]
            return accu[0] if return_single else accu
        pred_value, pred_label = paddle.topk(pred, maxk, axis=1)
        pred_label = pred_label.transpose(
            [1, 0])  # transpose to shape (maxk, N)
        correct = paddle.equal(pred_label,
                               (target.reshape([1, -1]).expand_as(pred_label)))
        res = []
        for k in topk:
            correct_k = paddle.sum(correct[:k].reshape([-1]).astype('float32'),
                                   axis=0,
                                   keepdim=True)
            res.append(
                paddle.multiply(correct_k,
                                paddle.to_tensor(100.0 / pred.shape[0])))
        return res[0] if return_single else res

    def forward(self, pred, batch):
        node_preds, edge_preds = pred
        gts, tag = batch[4], batch[5]
        gts = self.pre_process(gts, tag)
        node_gts, edge_gts = [], []
        for gt in gts:
            node_gts.append(gt[:, 0])
            edge_gts.append(gt[:, 1:].reshape([-1]))
        node_gts = paddle.concat(node_gts)
        edge_gts = paddle.concat(edge_gts)

        node_valids = paddle.nonzero(node_gts != self.ignore).reshape([-1])
        edge_valids = paddle.nonzero(edge_gts != -1).reshape([-1])
        loss_node = self.loss_node(node_preds, node_gts)
        loss_edge = self.loss_edge(edge_preds, edge_gts)
        loss = self.node_weight * loss_node + self.edge_weight * loss_edge
        return dict(
            loss=loss,
            loss_node=loss_node,
            loss_edge=loss_edge,
            acc_node=self.accuracy(
                paddle.gather(node_preds, node_valids),
                paddle.gather(node_gts, node_valids)),
            acc_edge=self.accuracy(
                paddle.gather(edge_preds, edge_valids),
                paddle.gather(edge_gts, edge_valids)))