eval_ser.py 4.98 KB
Newer Older
zhoujun's avatar
zhoujun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
import time
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, print_arguments

from ppocr.utils.logging import get_logger


def eval(args):
    logger = get_logger()
    print_arguments(args, logger)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification.from_pretrained(
        args.model_name_or_path)

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    results, _ = evaluate(args, model, tokenizer, eval_dataloader, label2id_map,
                          id2label_map, pad_token_label_id, logger)

    logger.info(results)


def evaluate(args,
             model,
             tokenizer,
             eval_dataloader,
             label2id_map,
             id2label_map,
             pad_token_label_id,
             logger,
             prefix=""):

    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            tmp_eval_loss, logits = outputs[:2]

            tmp_eval_loss = tmp_eval_loss.mean()

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.numpy()
            out_label_ids = batch["labels"].numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            out_label_ids = np.append(
                out_label_ids, batch["labels"].numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

WenmuZhou's avatar
WenmuZhou committed
131
132
133
    with open(
            os.path.join(args.output_dir, "test_gt.txt"), "w",
            encoding='utf-8') as fout:
zhoujun's avatar
zhoujun committed
134
135
136
137
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
WenmuZhou's avatar
WenmuZhou committed
138
139
140
    with open(
            os.path.join(args.output_dir, "test_pred.txt"), "w",
            encoding='utf-8') as fout:
zhoujun's avatar
zhoujun committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
    model.train()
    return results, preds_list


if __name__ == "__main__":
    args = parse_args()
    eval(args)