predict_table.py 8.37 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import time
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
33
34
35
from ppstructure.table.matcher import distance, compute_iou
from ppstructure.utility import parse_args
import ppstructure.table.predict_structure as predict_strture
WenmuZhou's avatar
WenmuZhou committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

logger = get_logger()


def expand(pix, det_box, shape):
    x0, y0, x1, y1 = det_box
    #     print(shape)
    h, w, c = shape
    tmp_x0 = x0 - pix
    tmp_x1 = x1 + pix
    tmp_y0 = y0 - pix
    tmp_y1 = y1 + pix
    x0_ = tmp_x0 if tmp_x0 >= 0 else 0
    x1_ = tmp_x1 if tmp_x1 <= w else w
    y0_ = tmp_y0 if tmp_y0 >= 0 else 0
    y1_ = tmp_y1 if tmp_y1 <= h else h
    return x0_, y0_, x1_, y1_


class TableSystem(object):
    def __init__(self, args, text_detector=None, text_recognizer=None):
        self.text_detector = predict_det.TextDetector(args) if text_detector is None else text_detector
        self.text_recognizer = predict_rec.TextRecognizer(args) if text_recognizer is None else text_recognizer
        self.table_structurer = predict_strture.TableStructurer(args)

    def __call__(self, img):
        ori_im = img.copy()
        structure_res, elapse = self.table_structurer(copy.deepcopy(img))
        dt_boxes, elapse = self.text_detector(copy.deepcopy(img))
        dt_boxes = sorted_boxes(dt_boxes)

        r_boxes = []
        for box in dt_boxes:
            x_min = box[:, 0].min() - 1
            x_max = box[:, 0].max() + 1
            y_min = box[:, 1].min() - 1
            y_max = box[:, 1].max() + 1
            box = [x_min, y_min, x_max, y_max]
            r_boxes.append(box)
        dt_boxes = np.array(r_boxes)

        logger.debug("dt_boxes num : {}, elapse : {}".format(
            len(dt_boxes), elapse))
        if dt_boxes is None:
            return None, None
        img_crop_list = []

        for i in range(len(dt_boxes)):
            det_box = dt_boxes[i]
            x0, y0, x1, y1 = expand(2, det_box, ori_im.shape)
            text_rect = ori_im[int(y0):int(y1), int(x0):int(x1), :]
            img_crop_list.append(text_rect)
        rec_res, elapse = self.text_recognizer(img_crop_list)
        logger.debug("rec_res num  : {}, elapse : {}".format(
            len(rec_res), elapse))

        pred_html, pred = self.rebuild_table(structure_res, dt_boxes, rec_res)
        return pred_html

    def rebuild_table(self, structure_res, dt_boxes, rec_res):
        pred_structures, pred_bboxes = structure_res
        matched_index = self.match_result(dt_boxes, pred_bboxes)
        pred_html, pred = self.get_pred_html(pred_structures, matched_index, rec_res)
        return pred_html, pred

    def match_result(self, dt_boxes, pred_bboxes):
        matched = {}
        for i, gt_box in enumerate(dt_boxes):
            # gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
            distances = []
            for j, pred_box in enumerate(pred_bboxes):
                distances.append(
                    (distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box)))  # 获取两两cell之间的L1距离和 1- IOU
            sorted_distances = distances.copy()
            # 根据距离和IOU挑选最"近"的cell
            sorted_distances = sorted(sorted_distances, key=lambda item: (item[1], item[0]))
            if distances.index(sorted_distances[0]) not in matched.keys():
                matched[distances.index(sorted_distances[0])] = [i]
            else:
                matched[distances.index(sorted_distances[0])].append(i)
        return matched

    def get_pred_html(self, pred_structures, matched_index, ocr_contents):
        end_html = []
        td_index = 0
        for tag in pred_structures:
            if '</td>' in tag:
                if td_index in matched_index.keys():
                    b_with = False
                    if '<b>' in ocr_contents[matched_index[td_index][0]] and len(matched_index[td_index]) > 1:
                        b_with = True
                        end_html.extend('<b>')
                    for i, td_index_index in enumerate(matched_index[td_index]):
                        content = ocr_contents[td_index_index][0]
                        if len(matched_index[td_index]) > 1:
                            if len(content) == 0:
                                continue
                            if content[0] == ' ':
                                content = content[1:]
                            if '<b>' in content:
                                content = content[3:]
                            if '</b>' in content:
                                content = content[:-4]
                            if len(content) == 0:
                                continue
                            if i != len(matched_index[td_index]) - 1 and ' ' != content[-1]:
                                content += ' '
                        end_html.extend(content)
                    if b_with:
                        end_html.extend('</b>')

                end_html.append(tag)
                td_index += 1
            else:
                end_html.append(tag)
        return ''.join(end_html), end_html


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


def to_excel(html_table, excel_path):
    from tablepyxl import tablepyxl
    tablepyxl.document_to_xl(html_table, excel_path)


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    os.makedirs(args.output, exist_ok=True)

    text_sys = TableSystem(args)
    img_num = len(image_file_list)
    for i, image_file in enumerate(image_file_list):
        logger.info("[{}/{}] {}".format(i, img_num, image_file))
        img, flag = check_and_read_gif(image_file)
WenmuZhou's avatar
WenmuZhou committed
190
        excel_path = os.path.join(args.output, os.path.basename(image_file).split('.')[0] + '.xlsx')
WenmuZhou's avatar
WenmuZhou committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.error("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        pred_html = text_sys(img)

        to_excel(pred_html, excel_path)
        logger.info('excel saved to {}'.format(excel_path))
        logger.info(pred_html)
        elapse = time.time() - starttime
        logger.info("Predict time : {:.3f}s".format(elapse))


if __name__ == "__main__":
    args = parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)