predict_rec.py 4.98 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
18
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
        image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_image_shape = image_shape
dyning's avatar
dyning committed
33
        self.character_type = args.rec_char_type
LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
37
38
39
        char_ops_params = {}
        char_ops_params["character_type"] = args.rec_char_type
        char_ops_params["character_dict_path"] = args.rec_char_dict_path
        char_ops_params['loss_type'] = 'ctc'
        self.char_ops = CharacterOps(char_ops_params)

40
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
41
        imgC, imgH, imgW = self.rec_image_shape
dyning's avatar
dyning committed
42
43
        if self.character_type == "ch":
            imgW = int(32 * max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
62
        batch_num = 30
LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
66
67
        rec_res = []
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
68
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
69
            for ino in range(beg_img_no, end_img_no):
70
71
72
73
74
                h, w = img_list[ino].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
            rec_idx_batch = self.output_tensors[0].copy_to_cpu()
            rec_idx_lod = self.output_tensors[0].lod()[0]
            predict_batch = self.output_tensors[1].copy_to_cpu()
            predict_lod = self.output_tensors[1].lod()[0]
            elapse = time.time() - starttime
            predict_time += elapse
            starttime = time.time()
            for rno in range(len(rec_idx_lod) - 1):
                beg = rec_idx_lod[rno]
                end = rec_idx_lod[rno + 1]
                rec_idx_tmp = rec_idx_batch[beg:end, 0]
                preds_text = self.char_ops.decode(rec_idx_tmp)
                beg = predict_lod[rno]
                end = predict_lod[rno + 1]
                probs = predict_batch[beg:end, :]
                ind = np.argmax(probs, axis=1)
                blank = probs.shape[1]
                valid_ind = np.where(ind != (blank - 1))[0]
                score = np.mean(probs[valid_ind, ind[valid_ind]])
                rec_res.append([preds_text, score])
        return rec_res, predict_time


if __name__ == "__main__":
    args = utility.parse_args()
dyning's avatar
dyning committed
107
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
108
109
110
111
112
113
114
115
116
117
118
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    rec_res, predict_time = text_recognizer(img_list)
dyning's avatar
dyning committed
119
    rec_res, predict_time = text_recognizer(img_list)
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))