utility.py 4.15 KB
Newer Older
shaohua.zhang's avatar
shaohua.zhang committed
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
shaohua.zhang's avatar
shaohua.zhang committed
3
4
5
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
#
shaohua.zhang's avatar
shaohua.zhang committed
7
#    http://www.apache.org/licenses/LICENSE-2.0
LDOUBLEV's avatar
LDOUBLEV committed
8
#
shaohua.zhang's avatar
shaohua.zhang committed
9
10
11
12
13
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14

shaohua.zhang's avatar
shaohua.zhang committed
15
16
17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
LDOUBLEV's avatar
LDOUBLEV committed
18

shaohua.zhang's avatar
shaohua.zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import errno
import os
import shutil
import tempfile

import paddle.fluid as fluid

from .utility import initial_logger
import re
logger = initial_logger()


def _mkdir_if_not_exist(path):
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


def _load_state(path):
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)
    return state


def load_params(exe, prog, path, ignore_params=[]):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
        ignore_params (list): ignore variable to load when finetuning.
            It can be specified by finetune_exclude_pretrained_params
            and the usage can refer to docs/advanced_tutorials/TRANSFER_LEARNING.md
    """
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))

    logger.info('Loading parameters from {}...'.format(path))

    ignore_set = set()
    state = _load_state(path)

    # ignore the parameter which mismatch the shape
    # between the model and pretrain weight.
    all_var_shape = {}
    for block in prog.blocks:
        for param in block.all_parameters():
            all_var_shape[param.name] = param.shape
    ignore_set.update([
        name for name, shape in all_var_shape.items()
        if name in state and shape != state[name].shape
    ])

    if ignore_params:
        all_var_names = [var.name for var in prog.list_vars()]
        ignore_list = filter(
            lambda var: any([re.match(name, var) for name in ignore_params]),
            all_var_names)
        ignore_set.update(list(ignore_list))

    if len(ignore_set) > 0:
        for k in ignore_set:
            if k in state:
                logger.warning('variable {} not used'.format(k))
                del state[k]
    fluid.io.set_program_state(prog, state)


def init_model(config, program, exe):
    """
    load model from checkpoint or pretrained_model
    """
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(program, path, exe)
        logger.info("Finish initing model from {}".format(path))

    pretrain_weights = config['Global'].get('pretrain_weights')
    if pretrain_weights:
        path = pretrain_weights
        load_params(exe, program, path)
        logger.info("Finish initing model from {}".format(path))


def save_model(program, model_path):
    """
    save model to the target path
    """
    fluid.save(program, model_path)
    logger.info("Already save model in {}".format(model_path))