det_local_server.py 2.83 KB
Newer Older
wangjiawei04's avatar
wangjiawei04 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
wangjiawei04's avatar
wangjiawei04 committed
24
25
26
27
if sys.argv[1] == 'gpu':
    from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu'
    from paddle_serving_server.web_service import WebService
wangjiawei04's avatar
wangjiawei04 committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import time
import re
import base64


class OCRService(WebService):
    def init_det(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, feed=[], fetch=[]):
        data = base64.b64decode(feed[0]["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = im.shape
        det_img = self.det_preprocess(im)
        _, self.new_h, self.new_w = det_img.shape
        return {"image": det_img[np.newaxis, :].copy()}, ["concat_1.tmp_0"]

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        det_out = fetch_map["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        return {"dt_boxes": dt_boxes.tolist()}


ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_det_model")
wangjiawei04's avatar
wangjiawei04 committed
70
71
72
73
74
if sys.argv[1] == 'gpu':
    ocr_service.set_gpus("0")
    ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
    ocr_service.prepare_server(workdir="workdir", port=9292)
wangjiawei04's avatar
wangjiawei04 committed
75
76
77
ocr_service.init_det()
ocr_service.run_debugger_service()
ocr_service.run_web_service()