rec_ctc_loss.py 1.71 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
WenmuZhou's avatar
WenmuZhou committed
20
from paddle import nn
LDOUBLEV's avatar
LDOUBLEV committed
21
22


WenmuZhou's avatar
WenmuZhou committed
23
class CTCLoss(nn.Layer):
24
    def __init__(self, use_focal_loss=False, **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
25
        super(CTCLoss, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
26
        self.loss_func = nn.CTCLoss(blank=0, reduction='none')
27
        self.use_focal_loss = use_focal_loss
LDOUBLEV's avatar
LDOUBLEV committed
28

littletomatodonkey's avatar
littletomatodonkey committed
29
    def forward(self, predicts, batch):
30
31
        if isinstance(predicts, (list, tuple)):
            predicts = predicts[-1]
WenmuZhou's avatar
WenmuZhou committed
32
33
34
35
36
37
        predicts = predicts.transpose((1, 0, 2))
        N, B, _ = predicts.shape
        preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
        labels = batch[1].astype("int32")
        label_lengths = batch[2].astype('int64')
        loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
38
39
40
41
42
        if self.use_focal_loss:
            weight = paddle.exp(-loss)
            weight = paddle.subtract(paddle.to_tensor([1.0]), weight)
            weight = paddle.square(weight) * self.focal_loss_alpha
            loss = paddle.multiply(loss, weight)
zhoujun's avatar
zhoujun committed
43
        loss = loss.mean()  # sum
WenmuZhou's avatar
WenmuZhou committed
44
        return {'loss': loss}