e2e_pg_loss.py 6.42 KB
Newer Older
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
Jethong's avatar
Jethong committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn
import paddle

22
from .det_basic_loss import DiceLoss
Jethong's avatar
Jethong committed
23
from ppocr.utils.e2e_utils.extract_batchsize import pre_process
Jethong's avatar
Jethong committed
24
25
26


class PGLoss(nn.Layer):
Jethong's avatar
Jethong committed
27
28
29
30
31
32
33
    def __init__(self,
                 tcl_bs,
                 max_text_length,
                 max_text_nums,
                 pad_num,
                 eps=1e-6,
                 **kwargs):
Jethong's avatar
Jethong committed
34
        super(PGLoss, self).__init__()
Jethong's avatar
Jethong committed
35
36
37
38
        self.tcl_bs = tcl_bs
        self.max_text_nums = max_text_nums
        self.max_text_length = max_text_length
        self.pad_num = pad_num
Jethong's avatar
Jethong committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        self.dice_loss = DiceLoss(eps=eps)

    def border_loss(self, f_border, l_border, l_score, l_mask):
        l_border_split, l_border_norm = paddle.tensor.split(
            l_border, num_or_sections=[4, 1], axis=1)
        f_border_split = f_border
        b, c, h, w = l_border_norm.shape
        l_border_norm_split = paddle.expand(
            x=l_border_norm, shape=[b, 4 * c, h, w])
        b, c, h, w = l_score.shape
        l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w])
        b, c, h, w = l_mask.shape
        l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w])
        border_diff = l_border_split - f_border_split
        abs_border_diff = paddle.abs(border_diff)
        border_sign = abs_border_diff < 1.0
        border_sign = paddle.cast(border_sign, dtype='float32')
        border_sign.stop_gradient = True
        border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
                         (abs_border_diff - 0.5) * (1.0 - border_sign)
        border_out_loss = l_border_norm_split * border_in_loss
        border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
                      (paddle.sum(l_border_score * l_border_mask) + 1e-5)
        return border_loss

    def direction_loss(self, f_direction, l_direction, l_score, l_mask):
        l_direction_split, l_direction_norm = paddle.tensor.split(
            l_direction, num_or_sections=[2, 1], axis=1)
        f_direction_split = f_direction
        b, c, h, w = l_direction_norm.shape
        l_direction_norm_split = paddle.expand(
            x=l_direction_norm, shape=[b, 2 * c, h, w])
        b, c, h, w = l_score.shape
        l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w])
        b, c, h, w = l_mask.shape
        l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w])
        direction_diff = l_direction_split - f_direction_split
        abs_direction_diff = paddle.abs(direction_diff)
        direction_sign = abs_direction_diff < 1.0
        direction_sign = paddle.cast(direction_sign, dtype='float32')
        direction_sign.stop_gradient = True
        direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \
                            (abs_direction_diff - 0.5) * (1.0 - direction_sign)
        direction_out_loss = l_direction_norm_split * direction_in_loss
        direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \
                         (paddle.sum(l_direction_score * l_direction_mask) + 1e-5)
        return direction_loss

    def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t):
        f_char = paddle.transpose(f_char, [0, 2, 3, 1])
        tcl_pos = paddle.reshape(tcl_pos, [-1, 3])
        tcl_pos = paddle.cast(tcl_pos, dtype=int)
        f_tcl_char = paddle.gather_nd(f_char, tcl_pos)
        f_tcl_char = paddle.reshape(f_tcl_char,
                                    [-1, 64, 37])  # len(Lexicon_Table)+1
        f_tcl_char_fg, f_tcl_char_bg = paddle.split(f_tcl_char, [36, 1], axis=2)
        f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0
        b, c, l = tcl_mask.shape
        tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, 36 * l])
        tcl_mask_fg.stop_gradient = True
        f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * (
            -20.0)
        f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2)
        f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2))
        N, B, _ = f_tcl_char_ld.shape
        input_lengths = paddle.to_tensor([N] * B, dtype='int64')
        cost = paddle.nn.functional.ctc_loss(
            log_probs=f_tcl_char_ld,
            labels=tcl_label,
            input_lengths=input_lengths,
            label_lengths=label_t,
Jethong's avatar
Jethong committed
110
            blank=self.pad_num,
Jethong's avatar
Jethong committed
111
112
113
114
115
116
117
118
            reduction='none')
        cost = cost.mean()
        return cost

    def forward(self, predicts, labels):
        images, tcl_maps, tcl_label_maps, border_maps \
            , direction_maps, training_masks, label_list, pos_list, pos_mask = labels
        # for all the batch_size
Jethong's avatar
Jethong committed
119
120
121
        pos_list, pos_mask, label_list, label_t = pre_process(
            label_list, pos_list, pos_mask, self.max_text_length,
            self.max_text_nums, self.pad_num, self.tcl_bs)
Jethong's avatar
Jethong committed
122

Jethong's avatar
Jethong committed
123
124
        f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \
                                                 predicts['f_char']
Jethong's avatar
Jethong committed
125
        score_loss = self.dice_loss(f_score, tcl_maps, training_masks)
Jethong's avatar
Jethong committed
126
        border_loss = self.border_loss(f_border, border_maps, tcl_maps,
Jethong's avatar
Jethong committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
                                       training_masks)
        direction_loss = self.direction_loss(f_direction, direction_maps,
                                             tcl_maps, training_masks)
        ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t)
        loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss

        losses = {
            'loss': loss_all,
            "score_loss": score_loss,
            "border_loss": border_loss,
            "direction_loss": direction_loss,
            "ctc_loss": ctc_loss
        }
        return losses