optimizer.py 5.19 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from paddle import optimizer as optim


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

zhoujun's avatar
zhoujun committed
33
34
35
36
37
38
    def __init__(self,
                 learning_rate,
                 momentum,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
WenmuZhou's avatar
WenmuZhou committed
39
40
41
42
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
zhoujun's avatar
zhoujun committed
43
        self.grad_clip = grad_clip
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
48

    def __call__(self, parameters):
        opt = optim.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
zhoujun's avatar
zhoujun committed
49
50
51
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=parameters)
WenmuZhou's avatar
WenmuZhou committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 lazy_mode=False,
                 **kwargs):
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode

    def __call__(self, parameters):
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
            parameters=parameters)
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
zhoujun's avatar
zhoujun committed
106
                 momentum=0.0,
WenmuZhou's avatar
WenmuZhou committed
107
108
109
                 rho=0.95,
                 epsilon=1e-6,
                 weight_decay=None,
zhoujun's avatar
zhoujun committed
110
                 grad_clip=None,
WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
115
116
117
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.weight_decay = weight_decay
zhoujun's avatar
zhoujun committed
118
        self.grad_clip = grad_clip
WenmuZhou's avatar
WenmuZhou committed
119
120
121
122
123
124
125
126

    def __call__(self, parameters):
        opt = optim.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
zhoujun's avatar
zhoujun committed
127
            grad_clip=self.grad_clip,
WenmuZhou's avatar
WenmuZhou committed
128
129
            parameters=parameters)
        return opt
tink2123's avatar
tink2123 committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160


class Adadelta(object):
    def __init__(self,
                 learning_rate=0.001,
                 epsilon=1e-08,
                 rho=0.95,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 **kwargs):
        self.learning_rate = learning_rate
        self.epsilon = epsilon
        self.rho = rho
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name

    def __call__(self, parameters):
        opt = optim.Adadelta(
            learning_rate=self.learning_rate,
            epsilon=self.epsilon,
            rho=self.rho,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            parameters=parameters)
        return opt