rec_aster_loss.py 3.63 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
tink2123's avatar
tink2123 committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


class CosineEmbeddingLoss(nn.Layer):
    def __init__(self, margin=0.):
        super(CosineEmbeddingLoss, self).__init__()
        self.margin = margin

    def forward(self, x1, x2, target):
        similarity = paddle.fluid.layers.reduce_sum(
            x1 * x2, dim=-1) / (paddle.norm(
                x1, axis=-1) * paddle.norm(
                    x2, axis=-1))
        one_list = paddle.full_like(target, fill_value=1)
        out = paddle.fluid.layers.reduce_mean(
            paddle.where(
                paddle.equal(target, one_list), 1. - similarity,
                paddle.maximum(
                    paddle.zeros_like(similarity), similarity - self.margin)))

        return out
tink2123's avatar
tink2123 committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


class AsterLoss(nn.Layer):
    def __init__(self,
                 weight=None,
                 size_average=True,
                 ignore_index=-100,
                 sequence_normalize=False,
                 sample_normalize=True,
                 **kwargs):
        super(AsterLoss, self).__init__()
        self.weight = weight
        self.size_average = size_average
        self.ignore_index = ignore_index
        self.sequence_normalize = sequence_normalize
        self.sample_normalize = sample_normalize
tink2123's avatar
tink2123 committed
57
58
59
        self.loss_sem = CosineEmbeddingLoss()
        self.is_cosin_loss = True
        self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none')
tink2123's avatar
tink2123 committed
60
61
62
63

    def forward(self, predicts, batch):
        targets = batch[1].astype("int64")
        label_lengths = batch[2].astype('int64')
tink2123's avatar
tink2123 committed
64
        sem_target = batch[3].astype('float32')
tink2123's avatar
tink2123 committed
65
66
67
        embedding_vectors = predicts['embedding_vectors']
        rec_pred = predicts['rec_pred']

tink2123's avatar
tink2123 committed
68
69
70
71
72
73
        if not self.is_cosin_loss:
            sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target))
        else:
            label_target = paddle.ones([embedding_vectors.shape[0]])
            sem_loss = paddle.sum(
                self.loss_sem(embedding_vectors, sem_target, label_target))
tink2123's avatar
tink2123 committed
74
75

        # rec loss
tink2123's avatar
tink2123 committed
76
        batch_size, def_max_length = targets.shape[0], targets.shape[1]
tink2123's avatar
tink2123 committed
77

tink2123's avatar
tink2123 committed
78
        mask = paddle.zeros([batch_size, def_max_length])
tink2123's avatar
tink2123 committed
79
80
81
82
83
84
85
        for i in range(batch_size):
            mask[i, :label_lengths[i]] = 1
        mask = paddle.cast(mask, "float32")
        max_length = max(label_lengths)
        assert max_length == rec_pred.shape[1]
        targets = targets[:, :max_length]
        mask = mask[:, :max_length]
tink2123's avatar
tink2123 committed
86
        rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]])
tink2123's avatar
tink2123 committed
87
88
89
        input = nn.functional.log_softmax(rec_pred, axis=1)
        targets = paddle.reshape(targets, [-1, 1])
        mask = paddle.reshape(mask, [-1, 1])
tink2123's avatar
tink2123 committed
90
        output = -paddle.index_sample(input, index=targets) * mask
tink2123's avatar
tink2123 committed
91
92
93
94
95
        output = paddle.sum(output)
        if self.sequence_normalize:
            output = output / paddle.sum(mask)
        if self.sample_normalize:
            output = output / batch_size
tink2123's avatar
tink2123 committed
96
97
98

        loss = output + sem_loss * 0.1
        return {'loss': loss}