eval_det_utils.py 5.59 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np

import paddle.fluid as fluid

__all__ = ['eval_det_run']

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

from ppocr.utils.utility import create_module
from .eval_det_iou import DetectionIoUEvaluator
import json
from copy import deepcopy
import cv2
from ppocr.data.reader_main import reader_main
LDOUBLEV's avatar
LDOUBLEV committed
37
import os
LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
45
46


def cal_det_res(exe, config, eval_info_dict):
    global_params = config['Global']
    save_res_path = global_params['save_res_path']
    postprocess_params = deepcopy(config["PostProcess"])
    postprocess_params.update(global_params)
    postprocess = create_module(postprocess_params['function']) \
        (params=postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
47
48
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
53
54
55
56
57
58
59
60
61
    with open(save_res_path, "wb") as fout:
        tackling_num = 0
        for data in eval_info_dict['reader']():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("test tackling num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
62
63
64
            try:
                img_list = np.concatenate(img_list, axis=0)
            except:
65
                err = "concatenate error usually caused by different input image shapes in evaluation or testing.\n \
66
67
                Please set \"test_batch_size_per_card\" in main yml as 1\n \
                or add \"test_image_shape: [h, w]\" in reader yml for EvalReader."
68

69
                raise Exception(err)
LDOUBLEV's avatar
LDOUBLEV committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            outs = exe.run(eval_info_dict['program'], \
                           feed={'image': img_list}, \
                           fetch_list=eval_info_dict['fetch_varname_list'])
            outs_dict = {}
            for tno in range(len(outs)):
                fetch_name = eval_info_dict['fetch_name_list'][tno]
                fetch_value = np.array(outs[tno])
                outs_dict[fetch_name] = fetch_value
            dt_boxes_list = postprocess(outs_dict, ratio_list)
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
    return


def load_label_infor(label_file_path, do_ignore=False):
    img_name_label_dict = {}
    with open(label_file_path, "rb") as fin:
        lines = fin.readlines()
        for line in lines:
            substr = line.decode().strip("\n").split("\t")
            bbox_infor = json.loads(substr[1])
            bbox_num = len(bbox_infor)
            for bno in range(bbox_num):
                text = bbox_infor[bno]['transcription']
                ignore = False
                if text == "###" and do_ignore:
                    ignore = True
                bbox_infor[bno]['ignore'] = ignore
106
            img_name_label_dict[os.path.basename(substr[0])] = bbox_infor
LDOUBLEV's avatar
LDOUBLEV committed
107
108
109
110
    return img_name_label_dict


def cal_det_metrics(gt_label_path, save_res_path):
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
    """
    calculate the detection metrics
    Args:
        gt_label_path(string): The groundtruth detection label file path
        save_res_path(string): The saved predicted detection label path
    return:
117
        claculated metrics including Hmean, precision and recall
LDOUBLEV's avatar
LDOUBLEV committed
118
    """
LDOUBLEV's avatar
LDOUBLEV committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    evaluator = DetectionIoUEvaluator()
    gt_label_infor = load_label_infor(gt_label_path, do_ignore=True)
    dt_label_infor = load_label_infor(save_res_path)
    results = []
    for img_name in gt_label_infor:
        gt_label = gt_label_infor[img_name]
        if img_name not in dt_label_infor:
            dt_label = []
        else:
            dt_label = dt_label_infor[img_name]
        result = evaluator.evaluate_image(gt_label, dt_label)
        results.append(result)
    methodMetrics = evaluator.combine_results(results)
    return methodMetrics


def eval_det_run(exe, config, eval_info_dict, mode):
    cal_det_res(exe, config, eval_info_dict)

    save_res_path = config['Global']['save_res_path']
    if mode == "eval":
        gt_label_path = config['EvalReader']['label_file_path']
        metrics = cal_det_metrics(gt_label_path, save_res_path)
    else:
        gt_label_path = config['TestReader']['label_file_path']
        do_eval = config['TestReader']['do_eval']
        if do_eval:
            metrics = cal_det_metrics(gt_label_path, save_res_path)
        else:
            metrics = {}
    return metrics