config.py 7.05 KB
Newer Older
weishengyu's avatar
weishengyu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
import os
weishengyu's avatar
dbg  
weishengyu committed
16
from argparse import ArgumentParser, RawDescriptionHelpFormatter
weishengyu's avatar
weishengyu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


def override(dl, ks, v):
    """
    Recursively replace dict of list

    Args:
        dl(dict or list): dict or list to be replaced
        ks(list): list of keys
        v(str): value to be replaced
    """

    def str2num(v):
        try:
            return eval(v)
        except Exception:
            return v

    assert isinstance(dl, (list, dict)), ("{} should be a list or a dict")
    assert len(ks) > 0, ('lenght of keys should larger than 0')
    if isinstance(dl, list):
        k = str2num(ks[0])
        if len(ks) == 1:
            assert k < len(dl), ('index({}) out of range({})'.format(k, dl))
            dl[k] = str2num(v)
        else:
            override(dl[k], ks[1:], v)
    else:
        if len(ks) == 1:
            #assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
            if not ks[0] in dl:
                logger.warning('A new filed ({}) detected!'.format(ks[0], dl))
            dl[ks[0]] = str2num(v)
        else:
            assert ks[0] in dl, (
                '({}) doesn\'t exist in {}, a new dict field is invalid'.
                format(ks[0], dl))
            override(dl[ks[0]], ks[1:], v)


def override_config(config, options=None):
    """
    Recursively override the config

    Args:
        config(dict): dict to be replaced
        options(list): list of pairs(key0.key1.idx.key2=value)
            such as: [
                'topk=2',
                'VALID.transforms.1.ResizeImage.resize_short=300'
            ]

    Returns:
        config(dict): replaced config
    """
    if options is not None:
        for opt in options:
            assert isinstance(opt, str), (
                "option({}) should be a str".format(opt))
            assert "=" in opt, (
                "option({}) should contain a ="
                "to distinguish between key and value".format(opt))
            pair = opt.split('=')
            assert len(pair) == 2, ("there can be only a = in the option")
            key, value = pair
            keys = key.split('.')
            override(config, keys, value)

    return config


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-t", "--tag", default="0", help="tag for marking worker")
        self.add_argument(
            '-o',
            '--override',
            action='append',
            default=[],
            help='config options to be overridden')
weishengyu's avatar
dbg  
weishengyu committed
101
102
103
104
105
106
        self.add_argument(
            "--style_image", default="examples/style_images/1.jpg", help="tag for marking worker")
        self.add_argument(
            "--text_corpus", default="PaddleOCR", help="tag for marking worker")
        self.add_argument(
            "--language", default="en", help="tag for marking worker")
weishengyu's avatar
weishengyu committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        return args


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: config
    """
    ext = os.path.splitext(file_path)[1]
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    with open(file_path, 'rb') as f:
        config = yaml.load(f, Loader=yaml.Loader)

    return config


def gen_config():
    base_config = {
        "Global": {
            "algorithm": "SRNet",
            "use_gpu": True,
            "start_epoch": 1,
            "stage1_epoch_num": 100,
            "stage2_epoch_num": 100,
            "log_smooth_window": 20,
            "print_batch_step": 2,
            "save_model_dir": "./output/SRNet",
            "use_visualdl": False,
            "save_epoch_step": 10,
            "vgg_pretrain": "./pretrained/VGG19_pretrained",
            "vgg_load_static_pretrain": True
        },
        "Architecture": {
            "model_type": "data_aug",
            "algorithm": "SRNet",
            "net_g": {
                "name": "srnet_net_g",
                "encode_dim": 64,
                "norm": "batch",
                "use_dropout": False,
                "init_type": "xavier",
                "init_gain": 0.02,
                "use_dilation": 1
            },
            # input_nc, ndf, netD,
            # n_layers_D=3, norm='instance', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_id='cuda:0'
            "bg_discriminator": {
                "name": "srnet_bg_discriminator",
                "input_nc": 6,
                "ndf": 64,
                "netD": "basic",
                "norm": "none",
                "init_type": "xavier",
            },
            "fusion_discriminator": {
                "name": "srnet_fusion_discriminator",
                "input_nc": 6,
                "ndf": 64,
                "netD": "basic",
                "norm": "none",
                "init_type": "xavier",
            }
        },
        "Loss": {
            "lamb": 10,
            "perceptual_lamb": 1,
            "muvar_lamb": 50,
            "style_lamb": 500
        },
        "Optimizer": {
            "name": "Adam",
            "learning_rate": {
                "name": "lambda",
                "lr": 0.0002,
                "lr_decay_iters": 50
            },
            "beta1": 0.5,
            "beta2": 0.999,
        },
        "Train": {
            "batch_size_per_card": 8,
            "num_workers_per_card": 4,
            "dataset": {
                "delimiter": "\t",
                "data_dir": "/",
                "label_file": "tmp/label.txt",
                "transforms": [{
                    "DecodeImage": {
                        "to_rgb": True,
                        "to_np": False,
                        "channel_first": False
                    }
                }, {
                    "NormalizeImage": {
                        "scale": 1. / 255.,
                        "mean": [0.485, 0.456, 0.406],
                        "std": [0.229, 0.224, 0.225],
                        "order": None
                    }
                }, {
                    "ToCHWImage": None
                }]
            }
        }
    }
    with open("config.yml", "w") as f:
        yaml.dump(base_config, f)


if __name__ == '__main__':
    gen_config()