"examples/dreambooth/requirements_flux.txt" did not exist on "10dc06c8d982f745e54d8d9daff6b258726b8172"
inference_ppocr_en.md 7.77 KB
Newer Older
Leif's avatar
Leif committed
1

2
# Python Inference for PP-OCR Model Zoo
Leif's avatar
Leif committed
3
4
5
6

This article introduces the use of the Python inference engine for the PP-OCR model library. The content is in order of text detection, text recognition, direction classifier and the prediction method of the three in series on the CPU and GPU.


WenmuZhou's avatar
WenmuZhou committed
7
8
9
10
11
12
13
- [Python Inference for PP-OCR Model Zoo](#python-inference-for-pp-ocr-model-zoo)
  - [Text Detection Model Inference](#text-detection-model-inference)
  - [Text Recognition Model Inference](#text-recognition-model-inference)
    - [1. Lightweight Chinese Recognition Model Inference](#1-lightweight-chinese-recognition-model-inference)
    - [2. Multilingual Model Inference](#2-multilingual-model-inference)
  - [Angle Classification Model Inference](#angle-classification-model-inference)
  - [Text Detection Angle Classification and Recognition Inference Concatenation](#text-detection-angle-classification-and-recognition-inference-concatenation)
Leif's avatar
Leif committed
14
15
16

<a name="DETECTION_MODEL_INFERENCE"></a>

17
## Text Detection Model Inference
Leif's avatar
Leif committed
18
19
20
21
22

The default configuration is based on the inference setting of the DB text detection model. For lightweight Chinese detection model inference, you can execute the following commands:

```
# download DB text detection inference model
23
24
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
25
# run inference
26
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"
Leif's avatar
Leif committed
27
28
```

fanruinet's avatar
fanruinet committed
29
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
Leif's avatar
Leif committed
30
31
32
33
34
35
36
37
38
39
40
41
42

![](../imgs_results/det_res_00018069.jpg)

You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `limit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.

The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
43
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --det_limit_type=max --det_limit_side_len=1216
Leif's avatar
Leif committed
44
45
46
47
```

If you want to use the CPU for prediction, execute the command as follows
```
48
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"  --use_gpu=False
Leif's avatar
Leif committed
49
50
51
52
```

<a name="RECOGNITION_MODEL_INFERENCE"></a>

53
## Text Recognition Model Inference
Leif's avatar
Leif committed
54
55
56


<a name="LIGHTWEIGHT_RECOGNITION"></a>
57
### 1. Lightweight Chinese Recognition Model Inference
Leif's avatar
Leif committed
58

59
**Note**: The input shape used by the recognition model of `PP-OCRv3` is `3, 48, 320`. If you use other recognition models, you need to set the parameter `--rec_image_shape` according to the model. In addition, the `rec_algorithm` used by the recognition model of `PP-OCRv3` is `SVTR_LCNet` by default. Note the difference from the original `SVTR`.
60
61


Leif's avatar
Leif committed
62
63
64
65
For lightweight Chinese recognition model inference, you can execute the following commands:

```
# download CRNN text recognition inference model
66
67
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
68
# run inference
69
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --rec_image_shape=3,48,320
Leif's avatar
Leif committed
70
71
72
73
74
75
76
```

![](../imgs_words_en/word_10.png)

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

```bash
77
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.988671)
Leif's avatar
Leif committed
78
79
80
81
```

<a name="MULTILINGUAL_MODEL_INFERENCE"></a>

fanruinet's avatar
fanruinet committed
82
### 2. Multilingual Model Inference
83
If you need to predict [other language models](./models_list_en.md#Multilingual), when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
Leif's avatar
Leif committed
84
85
86
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:

```
87
88
wget wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar

WenmuZhou's avatar
WenmuZhou committed
89
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
Leif's avatar
Leif committed
90
91
92
93
94
95
96
97
98
99
100
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```

<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>

101
## Angle Classification Model Inference
Leif's avatar
Leif committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

For angle classification model inference, you can execute the following commands:


```
# download text angle class inference model:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words_en/word_10.png)

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

```
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
```

<a name="CONCATENATION"></a>
121
## Text Detection Angle Classification and Recognition Inference Concatenation
Leif's avatar
Leif committed
122

123
**Note**: The input shape used by the recognition model of `PP-OCRv3` is `3, 48, 320`. If you use other recognition models, you need to set the parameter `--rec_image_shape` according to the model. In addition, the `rec_algorithm` used by the recognition model of `PP-OCRv3` is `SVTR_LCNet` by default. Note the difference from the original `SVTR`.
124

Leif's avatar
Leif committed
125
126
127
128
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.

```shell
# use direction classifier
129
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true
Leif's avatar
Leif committed
130
131

# not use use direction classifier
132
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false
Leif's avatar
Leif committed
133
# use multi-process
134
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
Leif's avatar
Leif committed
135
136
137
138
139
```


After executing the command, the recognition result image is as follows:

140
![](../imgs_results/system_res_00018069_v3.jpg)