web_service_rec.py 3.17 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op

import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
tink2123's avatar
tink2123 committed
24
from web_service_det import ArgsParser
tink2123's avatar
tink2123 committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

_LOGGER = logging.getLogger()


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader(
            char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
        data = np.fromstring(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        feed_list = []
        max_wh_ratio = 0
        ## Many mini-batchs, the type of feed_data is list.
        max_batch_size = 6  # len(dt_boxes)

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = max_batch_size
        rem = boxes_size % max_batch_size

        h, w = im.shape[0:2]
        wh_ratio = w * 1.0 / h
        max_wh_ratio = max(max_wh_ratio, wh_ratio)
        _, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
        norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
        norm_img = norm_img[np.newaxis, :]
        feed = {"x": norm_img.copy()}
        feed_list.append(feed)
        return feed_list, False, None, ""

littletomatodonkey's avatar
littletomatodonkey committed
60
    def postprocess(self, input_dicts, fetch_data, data_id, log_id):
tink2123's avatar
tink2123 committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        res_list = []
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
                    res_list.append(res[0])
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])

        res = {"res": str(res_list)}
        return res, None, ""


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        rec_op = RecOp(name="rec", input_ops=[read_op])
        return rec_op


uci_service = OcrService(name="ocr")
tink2123's avatar
tink2123 committed
86
87
FLAGS = ArgsParser().parse_args()
uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
tink2123's avatar
tink2123 committed
88
uci_service.run_service()