operators.py 14.8 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np
zhiminzhang0830's avatar
zhiminzhang0830 committed
26
import math
WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31


class DecodeImage(object):
    """ decode image """

zhiminzhang0830's avatar
zhiminzhang0830 committed
32
33
34
35
36
    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
WenmuZhou's avatar
WenmuZhou committed
37
38
        self.img_mode = img_mode
        self.channel_first = channel_first
zhiminzhang0830's avatar
zhiminzhang0830 committed
39
        self.ignore_orientation = ignore_orientation
WenmuZhou's avatar
WenmuZhou committed
40
41
42
43
44
45
46
47
48
49

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
zhiminzhang0830's avatar
zhiminzhang0830 committed
50
51
52
53
54
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
                               cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
LDOUBLEV's avatar
LDOUBLEV committed
55
56
        if img is None:
            return None
WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
61
62
63
64
65
66
67
68
69
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


Topdu's avatar
Topdu committed
70
71
72
class NRTRDecodeImage(object):
    """ decode image """

zhiminzhang0830's avatar
zhiminzhang0830 committed
73
    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
Topdu's avatar
Topdu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

zhiminzhang0830's avatar
zhiminzhang0830 committed
87
        img = cv2.imdecode(img, 1)
Topdu's avatar
Topdu committed
88
89
90
91
92
93
94
95

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
tink2123's avatar
tink2123 committed
96
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Topdu's avatar
Topdu committed
97
98
99
100
101
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

tink2123's avatar
tink2123 committed
102

WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


tink2123's avatar
tink2123 committed
146
147
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
tink2123's avatar
tink2123 committed
148
        import fasttext
tink2123's avatar
tink2123 committed
149
150
151
152
153
154
155
156
157
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


dyning's avatar
dyning committed
158
class KeepKeys(object):
WenmuZhou's avatar
WenmuZhou committed
159
160
161
162
163
164
165
166
167
168
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


zhiminzhang0830's avatar
zhiminzhang0830 committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
class Pad(object):
    def __init__(self, size_div=32, **kwargs):
        self.size_div = size_div

    def __call__(self, data):

        img = data['image']
        resize_h2 = max(int(math.ceil(img.shape[0] / 32) * 32), 32)
        resize_w2 = max(int(math.ceil(img.shape[1] / 32) * 32), 32)
        img = cv2.copyMakeBorder(
            img,
            0,
            resize_h2 - img.shape[0],
            0,
            resize_w2 - img.shape[1],
            cv2.BORDER_CONSTANT,
            value=0)
        data['image'] = img
        return data


LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
204
205
        if 'polys' in data:
            text_polys = data['polys']
LDOUBLEV's avatar
LDOUBLEV committed
206
207

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
208
209
210
211
212
213
214
215
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
216
217
218
219
        data['image'] = img_resize
        return data


WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
225
226
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
zhoujun's avatar
zhoujun committed
227
        elif 'limit_side_len' in kwargs:
WenmuZhou's avatar
WenmuZhou committed
228
229
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
zhoujun's avatar
zhoujun committed
230
        elif 'resize_long' in kwargs:
MissPenguin's avatar
MissPenguin committed
231
232
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
WenmuZhou's avatar
WenmuZhou committed
233
234
235
236
237
238
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
MissPenguin's avatar
MissPenguin committed
239
        src_h, src_w, _ = img.shape
WenmuZhou's avatar
WenmuZhou committed
240
241

        if self.resize_type == 0:
MissPenguin's avatar
MissPenguin committed
242
243
244
245
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
WenmuZhou's avatar
WenmuZhou committed
246
        else:
MissPenguin's avatar
MissPenguin committed
247
248
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
WenmuZhou's avatar
WenmuZhou committed
249
        data['image'] = img
MissPenguin's avatar
MissPenguin committed
250
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
WenmuZhou's avatar
WenmuZhou committed
251
252
253
254
255
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
MissPenguin's avatar
MissPenguin committed
256
257
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
WenmuZhou's avatar
WenmuZhou committed
258
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
MissPenguin's avatar
MissPenguin committed
259
260
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
WenmuZhou's avatar
WenmuZhou committed
261
262
263
264
265
266
267
268
269
270

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
WenmuZhou's avatar
WenmuZhou committed
271
        h, w, c = img.shape
WenmuZhou's avatar
WenmuZhou committed
272
273
274
275
276
277
278
279
280
281

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
282
        elif self.limit_type == 'min':
WenmuZhou's avatar
WenmuZhou committed
283
284
285
286
287
288
289
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
290
        elif self.limit_type == 'resize_long':
LDOUBLEV's avatar
LDOUBLEV committed
291
            ratio = float(limit_side_len) / max(h, w)
WenmuZhou's avatar
WenmuZhou committed
292
293
        else:
            raise Exception('not support limit type, image ')
WenmuZhou's avatar
WenmuZhou committed
294
295
296
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

zhoujun's avatar
zhoujun committed
297
298
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
WenmuZhou's avatar
WenmuZhou committed
299
300
301
302
303
304
305
306

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
MissPenguin's avatar
MissPenguin committed
307
308
309
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
LDOUBLEV's avatar
LDOUBLEV committed
310

MissPenguin's avatar
MissPenguin committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
Jethong's avatar
Jethong committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

356
        h, w, _ = im.shape
Jethong's avatar
Jethong committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
402
403
404
405
406
407
408
409
410
411
412
413


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
LDOUBLEV's avatar
debug  
LDOUBLEV committed
414
415
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
416
417
418
419
420
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
LDOUBLEV's avatar
debug  
LDOUBLEV committed
421
        data['shape'] = np.array([new_h, new_w])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
422
423
424
        return data

    def resize_image(self, img):
LDOUBLEV's avatar
debug  
LDOUBLEV committed
425
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
426
427
428
429
430
431
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
LDOUBLEV's avatar
debug  
LDOUBLEV committed
432
433
434
435
436
437
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
438
439
440
441
442
443
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
LDOUBLEV's avatar
debug  
LDOUBLEV committed
444
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
445
446
447
448
449
450
451

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points