det_metric.py 5.7 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

zhiminzhang0830's avatar
zhiminzhang0830 committed
19
__all__ = ['DetMetric', 'DetFCEMetric']
WenmuZhou's avatar
WenmuZhou committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

from .eval_det_iou import DetectionIoUEvaluator


class DetMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]
        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': ''
            } for det_polyon in pred['points']]
            result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
            self.results.append(result)

    def get_metric(self):
        """
zhoujun's avatar
zhoujun committed
60
        return metrics {
WenmuZhou's avatar
WenmuZhou committed
61
62
63
64
65
66
67
68
69
70
71
72
                 'precision': 0,
                 'recall': 0,
                 'hmean': 0
            }
        """

        metircs = self.evaluator.combine_results(self.results)
        self.reset()
        return metircs

    def reset(self):
        self.results = []  # clear results
zhiminzhang0830's avatar
zhiminzhang0830 committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137


class DetFCEMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]

        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': '',
                'score': score
            } for det_polyon, score in zip(pred['points'], pred['scores'])]

            for score_thr in self.results.keys():
                det_info_list_thr = [
                    det_info for det_info in det_info_list
                    if det_info['score'] >= score_thr
                ]
                result = self.evaluator.evaluate_image(gt_info_list,
                                                       det_info_list_thr)
                self.results[score_thr].append(result)

    def get_metric(self):
        """
        return metrics {'heman':0,
            'thr 0.3':'precision: 0 recall: 0 hmean: 0',
            'thr 0.4':'precision: 0 recall: 0 hmean: 0',
            'thr 0.5':'precision: 0 recall: 0 hmean: 0',
            'thr 0.6':'precision: 0 recall: 0 hmean: 0',
            'thr 0.7':'precision: 0 recall: 0 hmean: 0',
            'thr 0.8':'precision: 0 recall: 0 hmean: 0',
            'thr 0.9':'precision: 0 recall: 0 hmean: 0',
            }
        """
        metircs = {}
        hmean = 0
        for score_thr in self.results.keys():
            metirc = self.evaluator.combine_results(self.results[score_thr])
            # for key, value in metirc.items():
            #     metircs['{}_{}'.format(key, score_thr)] = value
            metirc_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
                metirc['precision'], metirc['recall'], metirc['hmean'])
WenmuZhou's avatar
WenmuZhou committed
138
            metircs['thr {}'.format(score_thr)] = metirc_str
zhiminzhang0830's avatar
zhiminzhang0830 committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            hmean = max(hmean, metirc['hmean'])
        metircs['hmean'] = hmean

        self.reset()
        return metircs

    def reset(self):
        self.results = {
            0.3: [],
            0.4: [],
            0.5: [],
            0.6: [],
            0.7: [],
            0.8: [],
            0.9: []
        }  # clear results