"ts/webui/src/components/fluent/ChildrenGap.ts" did not exist on "af198888285943f0a8844c1a7af2fc685a47a9db"
pg_fpn.py 9.74 KB
Newer Older
Jethong's avatar
Jethong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
            use_global_stats=False)

    def forward(self, inputs):
        # if self.is_vd_mode:
        #     inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class DeConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=4,
                 stride=2,
                 padding=1,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(DeConvBNLayer, self).__init__()

        self.if_act = if_act
        self.act = act
        self.deconv = nn.Conv2DTranspose(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=act,
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
            moving_mean_name="bn_" + name + "_mean",
            moving_variance_name="bn_" + name + "_variance",
            use_global_stats=False)

    def forward(self, x):
        x = self.deconv(x)
        x = self.bn(x)
        return x


Jethong's avatar
Jethong committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
class PGFPN(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super(PGFPN, self).__init__()
        num_inputs = [2048, 2048, 1024, 512, 256]
        num_outputs = [256, 256, 192, 192, 128]
        self.out_channels = 128
        # print(in_channels)
        self.conv_bn_layer_1 = ConvBNLayer(
            in_channels=3,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d1')
        self.conv_bn_layer_2 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d2')
        self.conv_bn_layer_3 = ConvBNLayer(
            in_channels=256,
            out_channels=128,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d3')
        self.conv_bn_layer_4 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=2,
            act=None,
            name='FPN_d4')
        self.conv_bn_layer_5 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name='FPN_d5')
        self.conv_bn_layer_6 = ConvBNLayer(
            in_channels=64,
            out_channels=128,
            kernel_size=3,
            stride=2,
            act=None,
            name='FPN_d6')
        self.conv_bn_layer_7 = ConvBNLayer(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            act='relu',
            name='FPN_d7')
        self.conv_bn_layer_8 = ConvBNLayer(
            in_channels=128,
            out_channels=128,
            kernel_size=1,
            stride=1,
            act=None,
            name='FPN_d8')
Jethong's avatar
Jethong committed
172

Jethong's avatar
Jethong committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        self.conv_h0 = ConvBNLayer(
            in_channels=num_inputs[0],
            out_channels=num_outputs[0],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(0))
        self.conv_h1 = ConvBNLayer(
            in_channels=num_inputs[1],
            out_channels=num_outputs[1],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(1))
        self.conv_h2 = ConvBNLayer(
            in_channels=num_inputs[2],
            out_channels=num_outputs[2],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(2))
        self.conv_h3 = ConvBNLayer(
            in_channels=num_inputs[3],
            out_channels=num_outputs[3],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(3))
        self.conv_h4 = ConvBNLayer(
            in_channels=num_inputs[4],
            out_channels=num_outputs[4],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(4))
Jethong's avatar
Jethong committed
208
209

        self.dconv0 = DeConvBNLayer(
Jethong's avatar
Jethong committed
210
211
            in_channels=num_outputs[0],
            out_channels=num_outputs[0 + 1],
Jethong's avatar
Jethong committed
212
213
            name="dconv_{}".format(0))
        self.dconv1 = DeConvBNLayer(
Jethong's avatar
Jethong committed
214
215
            in_channels=num_outputs[1],
            out_channels=num_outputs[1 + 1],
Jethong's avatar
Jethong committed
216
217
218
            act=None,
            name="dconv_{}".format(1))
        self.dconv2 = DeConvBNLayer(
Jethong's avatar
Jethong committed
219
220
            in_channels=num_outputs[2],
            out_channels=num_outputs[2 + 1],
Jethong's avatar
Jethong committed
221
222
223
            act=None,
            name="dconv_{}".format(2))
        self.dconv3 = DeConvBNLayer(
Jethong's avatar
Jethong committed
224
225
            in_channels=num_outputs[3],
            out_channels=num_outputs[3 + 1],
Jethong's avatar
Jethong committed
226
227
228
            act=None,
            name="dconv_{}".format(3))
        self.conv_g1 = ConvBNLayer(
Jethong's avatar
Jethong committed
229
230
            in_channels=num_outputs[1],
            out_channels=num_outputs[1],
Jethong's avatar
Jethong committed
231
232
233
234
235
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(1))
        self.conv_g2 = ConvBNLayer(
Jethong's avatar
Jethong committed
236
237
            in_channels=num_outputs[2],
            out_channels=num_outputs[2],
Jethong's avatar
Jethong committed
238
239
240
241
242
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(2))
        self.conv_g3 = ConvBNLayer(
Jethong's avatar
Jethong committed
243
244
            in_channels=num_outputs[3],
            out_channels=num_outputs[3],
Jethong's avatar
Jethong committed
245
246
247
248
249
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(3))
        self.conv_g4 = ConvBNLayer(
Jethong's avatar
Jethong committed
250
251
            in_channels=num_outputs[4],
            out_channels=num_outputs[4],
Jethong's avatar
Jethong committed
252
253
254
255
256
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(4))
        self.convf = ConvBNLayer(
Jethong's avatar
Jethong committed
257
258
            in_channels=num_outputs[4],
            out_channels=num_outputs[4],
Jethong's avatar
Jethong committed
259
260
261
262
263
264
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_f{}".format(4))

    def forward(self, x):
Jethong's avatar
Jethong committed
265
266
267
268
269
270
271
272
        c0, c1, c2, c3, c4, c5, c6 = x
        # FPN_Down_Fusion
        f = [c0, c1, c2]
        g = [None, None, None]
        h = [None, None, None]
        h[0] = self.conv_bn_layer_1(f[0])
        h[1] = self.conv_bn_layer_2(f[1])
        h[2] = self.conv_bn_layer_3(f[2])
Jethong's avatar
Jethong committed
273

Jethong's avatar
Jethong committed
274
275
276
277
278
        g[0] = self.conv_bn_layer_4(h[0])
        g[1] = paddle.add(g[0], h[1])
        g[1] = F.relu(g[1])
        g[1] = self.conv_bn_layer_5(g[1])
        g[1] = self.conv_bn_layer_6(g[1])
Jethong's avatar
Jethong committed
279

Jethong's avatar
Jethong committed
280
281
282
283
        g[2] = paddle.add(g[1], h[2])
        g[2] = F.relu(g[2])
        g[2] = self.conv_bn_layer_7(g[2])
        f_down = self.conv_bn_layer_8(g[2])
Jethong's avatar
Jethong committed
284

Jethong's avatar
Jethong committed
285
286
287
288
289
290
291
292
293
        # FPN UP Fusion
        f1 = [c6, c5, c4, c3, c2]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None]
        h[0] = self.conv_h0(f1[0])
        h[1] = self.conv_h1(f1[1])
        h[2] = self.conv_h2(f1[2])
        h[3] = self.conv_h3(f1[3])
        h[4] = self.conv_h4(f1[4])
Jethong's avatar
Jethong committed
294

Jethong's avatar
Jethong committed
295
296
297
298
299
        g[0] = self.dconv0(h[0])
        g[1] = paddle.add(g[0], h[1])
        g[1] = F.relu(g[1])
        g[1] = self.conv_g1(g[1])
        g[1] = self.dconv1(g[1])
Jethong's avatar
Jethong committed
300

Jethong's avatar
Jethong committed
301
302
303
304
        g[2] = paddle.add(g[1], h[2])
        g[2] = F.relu(g[2])
        g[2] = self.conv_g2(g[2])
        g[2] = self.dconv2(g[2])
Jethong's avatar
Jethong committed
305

Jethong's avatar
Jethong committed
306
307
308
309
        g[3] = paddle.add(g[2], h[3])
        g[3] = F.relu(g[3])
        g[3] = self.conv_g3(g[3])
        g[3] = self.dconv3(g[3])
Jethong's avatar
Jethong committed
310

Jethong's avatar
Jethong committed
311
312
313
314
315
        g[4] = paddle.add(x=g[3], y=h[4])
        g[4] = F.relu(g[4])
        g[4] = self.conv_g4(g[4])
        f_up = self.convf(g[4])
        f_common = paddle.add(f_down, f_up)
Jethong's avatar
Jethong committed
316
317
        f_common = F.relu(f_common)
        return f_common