"vscode:/vscode.git/clone" did not exist on "c697f524761abd2314c030221a3ad2f7791eab4e"
preprocess_op.cpp 4.07 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/preprocess_op.h>

namespace PaddleOCR {

void Permute::Run(const cv::Mat *im, float *data) {
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
  }
}

void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
                    const std::vector<float> &scale, const bool is_scale) {
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
    }
  }
}

void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
root's avatar
root committed
63
64
                         int max_size_len, float &ratio_h, float &ratio_w,
                         bool use_tensorrt) {
littletomatodonkey's avatar
littletomatodonkey committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
      ratio = float(max_size_len) / float(h);
    } else {
      ratio = float(max_size_len) / float(w);
    }
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);
LDOUBLEV's avatar
LDOUBLEV committed
80

81
82
  resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
  resize_w = max(int(round(float(resize_w) / 32) * 32), 32);
littletomatodonkey's avatar
littletomatodonkey committed
83

LDOUBLEV's avatar
LDOUBLEV committed
84
85
86
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
  ratio_h = float(resize_h) / float(h);
  ratio_w = float(resize_w) / float(w);
littletomatodonkey's avatar
littletomatodonkey committed
87
88
89
}

void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
root's avatar
root committed
90
                        bool use_tensorrt,
littletomatodonkey's avatar
littletomatodonkey committed
91
                        const std::vector<int> &rec_image_shape) {
littletomatodonkey's avatar
littletomatodonkey committed
92
93
94
95
96
97
98
99
100
101
102
103
104
  int imgC, imgH, imgW;
  imgC = rec_image_shape[0];
  imgH = rec_image_shape[1];
  imgW = rec_image_shape[2];

  imgW = int(32 * wh_ratio);

  float ratio = float(img.cols) / float(img.rows);
  int resize_w, resize_h;
  if (ceilf(imgH * ratio) > imgW)
    resize_w = imgW;
  else
    resize_w = int(ceilf(imgH * ratio));
LDOUBLEV's avatar
LDOUBLEV committed
105
106
107
108
109
110

  cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
             cv::INTER_LINEAR);
  cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
                     int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});
littletomatodonkey's avatar
littletomatodonkey committed
111
112
}

zhoujun's avatar
zhoujun committed
113
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
root's avatar
root committed
114
                       bool use_tensorrt,
zhoujun's avatar
zhoujun committed
115
116
117
118
119
120
121
122
123
124
125
126
127
                       const std::vector<int> &rec_image_shape) {
  int imgC, imgH, imgW;
  imgC = rec_image_shape[0];
  imgH = rec_image_shape[1];
  imgW = rec_image_shape[2];

  float ratio = float(img.cols) / float(img.rows);
  int resize_w, resize_h;
  if (ceilf(imgH * ratio) > imgW)
    resize_w = imgW;
  else
    resize_w = int(ceilf(imgH * ratio));

LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
  cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
             cv::INTER_LINEAR);
  if (resize_w < imgW) {
    cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
                       cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
zhoujun's avatar
zhoujun committed
133
134
135
136
  }
}

} // namespace PaddleOCR