utility.py 3.54 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
16
import os
littletomatodonkey's avatar
littletomatodonkey committed
17
import imghdr
LDOUBLEV's avatar
LDOUBLEV committed
18
import cv2
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


def initial_logger():
    FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
    logging.basicConfig(level=logging.INFO, format=FORMAT)
    logger = logging.getLogger(__name__)
    return logger


import importlib


def create_module(module_str):
    tmpss = module_str.split(",")
    assert len(tmpss) == 2, "Error formate\
        of the module path: {}".format(module_str)
    module_name, function_name = tmpss[0], tmpss[1]
    somemodule = importlib.import_module(module_name, __package__)
    function = getattr(somemodule, function_name)
    return function


def get_check_global_params(mode):
    check_params = ['use_gpu', 'max_text_length', 'image_shape',\
        'image_shape', 'character_type', 'loss_type']
    if mode == "train_eval":
        check_params = check_params + [\
            'train_batch_size_per_card', 'test_batch_size_per_card']
    elif mode == "test":
        check_params = check_params + ['test_batch_size_per_card']
    return check_params


def get_check_reader_params(mode):
    check_params = []
    if mode == "train_eval":
        check_params = ['TrainReader', 'EvalReader']
    elif mode == "test":
        check_params = ['TestReader']
    return check_params


61
62
63
64
65
def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

LDOUBLEV's avatar
LDOUBLEV committed
66
    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
littletomatodonkey's avatar
littletomatodonkey committed
67
    if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
68
69
70
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
littletomatodonkey's avatar
littletomatodonkey committed
71
72
73
            file_path = os.path.join(img_file, single_file)
            if imghdr.what(file_path) in img_end:
                imgs_lists.append(file_path)
74
75
76
77
78
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    return imgs_lists


LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
83
84
def check_and_read_gif(img_path):
    if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
        gif = cv2.VideoCapture(img_path)
        ret, frame = gif.read()
        if not ret:
            logging.info("Cannot read {}. This gif image maybe corrupted.")
LDOUBLEV's avatar
LDOUBLEV committed
85
            return None, False
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
92
        if len(frame.shape) == 2 or frame.shape[-1] == 1:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        imgvalue = frame[:, :, ::-1]
        return imgvalue, True
    return None, False


LDOUBLEV's avatar
LDOUBLEV committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from paddle import fluid


def create_multi_devices_program(program, loss_var_name):
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program