make_pse_gt.py 3.81 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
18
19
20
21
22
23
24
25
26

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon

__all__ = ['MakePseGt']

WenmuZhou's avatar
WenmuZhou committed
27

WenmuZhou's avatar
WenmuZhou committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class MakePseGt(object):
    def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs):
        self.kernel_num = kernel_num
        self.min_shrink_ratio = min_shrink_ratio
        self.size = size

    def __call__(self, data):

        image = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']

        h, w, _ = image.shape
        short_edge = min(h, w)
        if short_edge < self.size:
            # keep short_size >= self.size
            scale = self.size / short_edge
            image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
            text_polys *= scale

        gt_kernels = []
WenmuZhou's avatar
WenmuZhou committed
49
        for i in range(1, self.kernel_num + 1):
WenmuZhou's avatar
WenmuZhou committed
50
            # s1->sn, from big to small
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
            rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1
                                                          ) * i
            text_kernel, ignore_tags = self.generate_kernel(
                image.shape[0:2], rate, text_polys, ignore_tags)
WenmuZhou's avatar
WenmuZhou committed
55
56
57
58
59
            gt_kernels.append(text_kernel)

        training_mask = np.ones(image.shape[0:2], dtype='uint8')
        for i in range(text_polys.shape[0]):
            if ignore_tags[i]:
WenmuZhou's avatar
WenmuZhou committed
60
61
62
                cv2.fillPoly(training_mask,
                             text_polys[i].astype(np.int32)[np.newaxis, :, :],
                             0)
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
67
68
69
70
71
72
73

        gt_kernels = np.array(gt_kernels)
        gt_kernels[gt_kernels > 0] = 1

        data['image'] = image
        data['polys'] = text_polys
        data['gt_kernels'] = gt_kernels[0:]
        data['gt_text'] = gt_kernels[0]
        data['mask'] = training_mask.astype('float32')
        return data

WenmuZhou's avatar
WenmuZhou committed
74
75
76
77
78
79
80
81
82
83
    def generate_kernel(self,
                        img_size,
                        shrink_ratio,
                        text_polys,
                        ignore_tags=None):
        """
        Refer to part of the code:
        https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/base_textdet_targets.py
        """

WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
        h, w = img_size
        text_kernel = np.zeros((h, w), dtype=np.float32)
        for i, poly in enumerate(text_polys):
            polygon = Polygon(poly)
WenmuZhou's avatar
WenmuZhou committed
88
89
            distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (
                polygon.length + 1e-6)
WenmuZhou's avatar
WenmuZhou committed
90
91
            subject = [tuple(l) for l in poly]
            pco = pyclipper.PyclipperOffset()
WenmuZhou's avatar
WenmuZhou committed
92
            pco.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            shrinked = np.array(pco.Execute(-distance))

            if len(shrinked) == 0 or shrinked.size == 0:
                if ignore_tags is not None:
                    ignore_tags[i] = True
                continue
            try:
                shrinked = np.array(shrinked[0]).reshape(-1, 2)
            except:
                if ignore_tags is not None:
                    ignore_tags[i] = True
                continue
            cv2.fillPoly(text_kernel, [shrinked.astype(np.int32)], i + 1)
        return text_kernel, ignore_tags