"examples/vscode:/vscode.git/clone" did not exist on "26f6f07f39f3f6bd9d3d3a174762d0df47f7e827"
optimizer.py 1.75 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
tink2123's avatar
tink2123 committed
18
19
20
from ppocr.utils.utility import initial_logger

logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
21
22
23
24
25
26
27
28
29
30
31
32
33


def AdamDecay(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
    """
    base_lr = params['base_lr']
    beta1 = params['beta1']
    beta2 = params['beta2']
tink2123's avatar
tink2123 committed
34
35
36
37
38
39
40
41
42
43
    if 'decay' in params:
        params = params['decay']
        decay_mode = params['function']
        step_each_epoch = params['step_each_epoch']
        total_epoch = params['total_epoch']
        if decay_mode == "cosine_decay":
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
tink2123's avatar
tink2123 committed
44
45
        else:
            logger.info("Only support Cosine decay currently")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
    optimizer = fluid.optimizer.Adam(
        learning_rate=base_lr,
        beta1=beta1,
        beta2=beta2,
        parameter_list=parameter_list)
    return optimizer