readme_en.md 9.68 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
English | [简体中文](readme.md)

WenmuZhou's avatar
WenmuZhou committed
3
4
5
6
7
8
9
10
11
12
13
14
15
- [Service deployment based on PaddleHub Serving](#service-deployment-based-on-paddlehub-serving)
  - [Quick start service](#quick-start-service)
    - [1. Prepare the environment](#1-prepare-the-environment)
    - [2. Download inference model](#2-download-inference-model)
    - [3. Install Service Module](#3-install-service-module)
    - [4. Start service](#4-start-service)
      - [Way 1. Start with command line parameters (CPU only)](#way-1-start-with-command-line-parameters-cpu-only)
      - [Way 2. Start with configuration file(CPU、GPU)](#way-2-start-with-configuration-filecpugpu)
  - [Send prediction requests](#send-prediction-requests)
  - [Returned result format](#returned-result-format)
  - [User defined service module modification](#user-defined-service-module-modification)


WenmuZhou's avatar
WenmuZhou committed
16
17
PaddleOCR provides 2 service deployment methods:
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please follow this tutorial.
LDOUBLEV's avatar
LDOUBLEV committed
18
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../../deploy/pdserving/README.md) for usage.
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

# Service deployment based on PaddleHub Serving  

The hubserving service deployment directory includes three service packages: detection, recognition, and two-stage series connection. Please select the corresponding service package to install and start service according to your needs. The directory is as follows:  
```
deploy/hubserving/
  └─  ocr_det     detection module service package
  └─  ocr_cls     angle class module service package
  └─  ocr_rec     recognition module service package
  └─  ocr_system  two-stage series connection service package
```

Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows:  
```
deploy/hubserving/ocr_system/
  └─  __init__.py    Empty file, required
  └─  config.json    Configuration file, optional, passed in as a parameter when using configuration to start the service
  └─  module.py      Main module file, required, contains the complete logic of the service
  └─  params.py      Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```

## Quick start service
The following steps take the 2-stage series service as an example. If only the detection service or recognition service is needed, replace the corresponding file path.

### 1. Prepare the environment
```shell
# Install paddlehub  
WenmuZhou's avatar
opt doc  
WenmuZhou committed
46
# python>3.6.2 is required bt paddlehub
littletomatodonkey's avatar
littletomatodonkey committed
47
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
WenmuZhou's avatar
WenmuZhou committed
48
49
50
```

### 2. Download inference model
51
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the PP-OCRv2 models are used, and the default model path is:  
WenmuZhou's avatar
WenmuZhou committed
52
```
53
54
detection model: ./inference/ch_PP-OCRv2_det_infer/
recognition model: ./inference/ch_PP-OCRv2_rec_infer/
MissPenguin's avatar
MissPenguin committed
55
text direction classifier: ./inference/ch_ppocr_mobile_v2.0_cls_infer/
WenmuZhou's avatar
WenmuZhou committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
```  

**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.

### 3. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs.

* On Linux platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy/hubserving/ocr_det/

# Or, install the angle class service module:
hub install deploy/hubserving/ocr_cls/

# Or, install the recognition service module:
hub install deploy/hubserving/ocr_rec/

# Or, install the 2-stage series service module:
hub install deploy/hubserving/ocr_system/
```

* On Windows platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy\hubserving\ocr_det\

# Or, install the angle class service module:
hub install deploy\hubserving\ocr_cls\

# Or, install the recognition service module:
hub install deploy\hubserving\ocr_rec\

# Or, install the 2-stage series service module:
hub install deploy\hubserving\ocr_system\
```

### 4. Start service
#### Way 1. Start with command line parameters (CPU only)

**start command:**  
```shell
$ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
                    --port XXXX \
                    --use_multiprocess \
                    --workers \
```  
**parameters:**  

|parameters|usage|  
|-|-|  
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|  
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|  

For example, start the 2-stage series service:  
```shell
hub serving start -m ocr_system
```  

This completes the deployment of a service API, using the default port number 8866.  

#### Way 2. Start with configuration file(CPU、GPU)
**start command:**  
```shell
hub serving start --config/-c config.json
```  
Wherein, the format of `config.json` is as follows:
```python
{
    "modules_info": {
        "ocr_system": {
            "init_args": {
                "version": "1.0.0",
                "use_gpu": true
            },
            "predict_args": {
            }
        }
    },
    "port": 8868,
    "use_multiprocess": false,
    "workers": 2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them, **when `use_gpu` is `true`, it means that the GPU is used to start the service**.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.

**Note:**  
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**  

For example, use GPU card No. 3 to start the 2-stage series service:
```shell
export CUDA_VISIBLE_DEVICES=3
hub serving start -c deploy/hubserving/ocr_system/config.json
```  

## Send prediction requests
After the service starts, you can use the following command to send a prediction request to obtain the prediction result:  
```shell
python tools/test_hubserving.py server_url image_path
```  

Two parameters need to be passed to the script:
- **server_url**:service address,format of which is
`http://[ip_address]:[port]/predict/[module_name]`  
For example, if the detection, recognition and 2-stage serial services are started with provided configuration files, the respective `server_url` would be:  
`http://127.0.0.1:8865/predict/ocr_det`  
`http://127.0.0.1:8866/predict/ocr_cls`  
`http://127.0.0.1:8867/predict/ocr_rec`  
`http://127.0.0.1:8868/predict/ocr_system`  
WenmuZhou's avatar
WenmuZhou committed
170
171
- **image_dir**:Test image path, can be a single image path or an image directory path
- **visualize**:Whether to visualize the results, the default value is False
WenmuZhou's avatar
WenmuZhou committed
172
173
174

**Eg.**
```shell
WenmuZhou's avatar
WenmuZhou committed
175
python tools/test_hubserving.py --server_url=http://127.0.0.1:8868/predict/ocr_system --image_dir./doc/imgs/ --visualize=false`
WenmuZhou's avatar
WenmuZhou committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
```

## Returned result format
The returned result is a list. Each item in the list is a dict. The dict may contain three fields. The information is as follows:

|field name|data type|description|
|----|----|----|
|angle|str|angle|
|text|str|text content|
|confidence|float|text recognition confidence|
|text_region|list|text location coordinates|

The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`. The details are as follows:

| field name/module name | ocr_det | ocr_cls | ocr_rec | ocr_system |
|  ----  |  ----  |  ----  |  ----  |  ----  |
|angle| | ✔ | | ✔ |
|text| | |✔|✔|
WenmuZhou's avatar
WenmuZhou committed
194
|confidence| |✔ |✔| |
WenmuZhou's avatar
WenmuZhou committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|text_region| ✔| | |✔ |

**Note:** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.

## User defined service module modification
If you need to modify the service logic, the following steps are generally required (take the modification of `ocr_system` for example):

- 1. Stop service
```shell
hub serving stop --port/-p XXXX
```
- 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs.  
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. If you want to turn off the text direction classifier, set the parameter `use_angle_cls` to `False`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test.  
- 3. Uninstall old service module
```shell
hub uninstall ocr_system
```
- 4. Install modified service module
```shell
hub install deploy/hubserving/ocr_system/
```
- 5. Restart service
```shell
hub serving start -m ocr_system
```