det_east_head.py 3.68 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
21
from collections import OrderedDict
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113


class EASTHead(object):
    """
    EAST: An Efficient and Accurate Scene Text Detector
        see arxiv: https://arxiv.org/abs/1704.03155
    args:
        params(dict): the super parameters for network build
    """

    def __init__(self, params):

        self.model_name = params['model_name']

    def unet_fusion(self, inputs):
        f = inputs[::-1]
        if self.model_name == "large":
            num_outputs = [128, 128, 128, 128]
        else:
            num_outputs = [64, 64, 64, 64]
        g = [None, None, None, None]
        h = [None, None, None, None]
        for i in range(4):
            if i == 0:
                h[i] = f[i]
            else:
                h[i] = fluid.layers.concat([g[i - 1], f[i]], axis=1)
                h[i] = conv_bn_layer(
                    input=h[i],
                    num_filters=num_outputs[i],
                    filter_size=3,
                    stride=1,
                    act='relu',
                    name="unet_h_%d" % (i))
            if i <= 2:
                #can be replaced with unpool
                g[i] = deconv_bn_layer(
                    input=h[i],
                    num_filters=num_outputs[i],
                    name="unet_g_%d" % (i))
            else:
                g[i] = conv_bn_layer(
                    input=h[i],
                    num_filters=num_outputs[i],
                    filter_size=3,
                    stride=1,
                    act='relu',
                    name="unet_g_%d" % (i))
        return g[3]

    def detector_header(self, f_common):
        if self.model_name == "large":
            num_outputs = [128, 64, 1, 8]
        else:
            num_outputs = [64, 32, 1, 8]
        f_det = conv_bn_layer(
            input=f_common,
            num_filters=num_outputs[0],
            filter_size=3,
            stride=1,
            act='relu',
            name="det_head1")
        f_det = conv_bn_layer(
            input=f_det,
            num_filters=num_outputs[1],
            filter_size=3,
            stride=1,
            act='relu',
            name="det_head2")
        #f_score
        f_score = conv_bn_layer(
            input=f_det,
            num_filters=num_outputs[2],
            filter_size=1,
            stride=1,
            act=None,
            name="f_score")
        f_score = fluid.layers.sigmoid(f_score)
        #f_geo
        f_geo = conv_bn_layer(
            input=f_det,
            num_filters=num_outputs[3],
            filter_size=1,
            stride=1,
            act=None,
            name="f_geo")
        f_geo = (fluid.layers.sigmoid(f_geo) - 0.5) * 2 * 800
        return f_score, f_geo

    def __call__(self, inputs):
        f_common = self.unet_fusion(inputs)
        f_score, f_geo = self.detector_header(f_common)
114
        predicts = OrderedDict()
LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
        predicts['f_score'] = f_score
        predicts['f_geo'] = f_geo
        return predicts