db_process.py 6.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json
import sys
tink2123's avatar
tink2123 committed
20
21
from ppocr.utils.utility import initial_logger
logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
26
27
28
29

from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap


class DBProcessTrain(object):
LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
33
    """
    DB pre-process for Train mode
    """

LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def __init__(self, params):
        self.img_set_dir = params['img_set_dir']
        self.image_shape = params['image_shape']

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def make_data_dict(self, imgvalue, entry):
        boxes = []
        texts = []
        ignores = []
        for rect in entry:
            points = rect['points']
            transcription = rect['transcription']
            try:
                box = self.order_points_clockwise(
                    np.array(points).reshape(-1, 2))
                if cv2.contourArea(box) > 0:
                    boxes.append(box)
                    texts.append(transcription)
                    ignores.append(transcription in ['*', '###'])
            except:
                print('load label failed!')
        data = {
            'image': imgvalue,
            'shape': [imgvalue.shape[0], imgvalue.shape[1]],
            'polys': np.array(boxes),
            'texts': texts,
            'ignore_tags': ignores,
        }
        return data

    def NormalizeImage(self, data):
        im = data['image']
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        data['image'] = im
        return data

    def FilterKeys(self, data):
        filter_keys = ['polys', 'texts', 'ignore_tags', 'shape']
        for key in filter_keys:
            if key in data:
                del data[key]
        return data

    def convert_label_infor(self, label_infor):
        label_infor = label_infor.decode()
        label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
        substr = label_infor.strip("\n").split("\t")
        img_path = self.img_set_dir + substr[0]
        label = json.loads(substr[1])
        return img_path, label

    def __call__(self, label_infor):
        img_path, gt_label = self.convert_label_infor(label_infor)
        imgvalue = cv2.imread(img_path)
        if imgvalue is None:
tink2123's avatar
tink2123 committed
105
            logger.info("{} does not exist!".format(img_path))
LDOUBLEV's avatar
LDOUBLEV committed
106
            return None
LDOUBLEV's avatar
LDOUBLEV committed
107
108
        if len(list(imgvalue.shape)) == 2 or imgvalue.shape[2] == 1:
            imgvalue = cv2.cvtColor(imgvalue, cv2.COLOR_GRAY2BGR)
LDOUBLEV's avatar
LDOUBLEV committed
109
110
111
112
113
114
115
116
117
118
119
120
        data = self.make_data_dict(imgvalue, gt_label)
        data = AugmentData(data)
        data = RandomCropData(data, self.image_shape[1:])
        data = MakeShrinkMap(data)
        data = MakeBorderMap(data)
        data = self.NormalizeImage(data)
        data = self.FilterKeys(data)
        return data['image'], data['shrink_map'], data['shrink_mask'], data[
            'threshold_map'], data['threshold_mask']


class DBProcessTest(object):
LDOUBLEV's avatar
LDOUBLEV committed
121
122
123
124
    """
    DB pre-process for Test mode
    """

LDOUBLEV's avatar
LDOUBLEV committed
125
126
127
    def __init__(self, params):
        super(DBProcessTest, self).__init__()
        self.resize_type = 0
128
129
        if 'test_image_shape' in params:
            self.image_shape = params['test_image_shape']
LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
133
134
135
136
137
138
139
            # print(self.image_shape)
            self.resize_type = 1
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

    def resize_image_type0(self, im):
        """
        resize image to a size multiple of 32 which is required by the network
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        """
        max_side_len = self.max_side_len
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # limit the max side
        if max(resize_h, resize_w) > max_side_len:
            if resize_h > resize_w:
                ratio = float(max_side_len) / resize_h
            else:
                ratio = float(max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % 32 == 0:
            resize_h = resize_h
LDOUBLEV's avatar
LDOUBLEV committed
163
164
        elif resize_h // 32 <= 1:
            resize_h = 32
LDOUBLEV's avatar
LDOUBLEV committed
165
        else:
LDOUBLEV's avatar
LDOUBLEV committed
166
            resize_h = (resize_h // 32 - 1) * 32
LDOUBLEV's avatar
LDOUBLEV committed
167
168
        if resize_w % 32 == 0:
            resize_w = resize_w
LDOUBLEV's avatar
LDOUBLEV committed
169
170
        elif resize_w // 32 <= 1:
            resize_w = 32
LDOUBLEV's avatar
LDOUBLEV committed
171
        else:
LDOUBLEV's avatar
LDOUBLEV committed
172
            resize_w = (resize_w // 32 - 1) * 32
LDOUBLEV's avatar
LDOUBLEV committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            im = cv2.resize(im, (int(resize_w), int(resize_h)))
        except:
            print(im.shape, resize_w, resize_h)
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image_type1(self, im):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = im.shape[:2]  # (h, w, c)
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        return im, (ratio_h, ratio_w)

    def normalize(self, im):
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        return im

    def __call__(self, im):
        if self.resize_type == 0:
            im, (ratio_h, ratio_w) = self.resize_image_type0(im)
        else:
            im, (ratio_h, ratio_w) = self.resize_image_type1(im)
        im = self.normalize(im)
        im = im[np.newaxis, :]
        return [im, (ratio_h, ratio_w)]