infer_rec.py 4.62 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import numpy as np

def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid

# from ppocr.utils.utility import load_config, merge_config
import program
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import create_module
tink2123's avatar
tink2123 committed
48
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
logger = initial_logger()


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_ops'] = char_ops

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    #     check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, outputs = rec_model(mode="test")
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    init_model(config, eval_prog, exe)

tink2123's avatar
tink2123 committed
80
    blobs = reader_main(config, 'test')()
tink2123's avatar
tink2123 committed
81
    infer_img = config['TestReader']['infer_img']
dyning's avatar
dyning committed
82
    loss_type = config['Global']['loss_type']
tink2123's avatar
tink2123 committed
83
    infer_list = get_image_file_list(infer_img)
tink2123's avatar
tink2123 committed
84
85
86
87
    max_img_num = len(infer_list)
    if len(infer_list) == 0:
        logger.info("Can not find img in infer_img dir.")
    for i in range(max_img_num):
dyning's avatar
dyning committed
88
        logger.info("infer_img:%s" % infer_list[i])
tink2123's avatar
tink2123 committed
89
        img = next(blobs)
LDOUBLEV's avatar
LDOUBLEV committed
90
91
92
93
        predict = exe.run(program=eval_prog,
                          feed={"image": img},
                          fetch_list=fetch_varname_list,
                          return_numpy=False)
dyning's avatar
dyning committed
94
95
        if loss_type == "ctc":
            preds = np.array(predict[0])
LDOUBLEV's avatar
LDOUBLEV committed
96
97
98
            preds = preds.reshape(-1)
            preds_lod = predict[0].lod()[0]
            preds_text = char_ops.decode(preds)
dyning's avatar
dyning committed
99
100
101
102
103
104
105
106
            probs = np.array(predict[1])
            ind = np.argmax(probs, axis=1)
            blank = probs.shape[1]
            valid_ind = np.where(ind != (blank - 1))[0]
            score = np.mean(probs[valid_ind, ind[valid_ind]])
        elif loss_type == "attention":
            preds = np.array(predict[0])
            probs = np.array(predict[1])
LDOUBLEV's avatar
LDOUBLEV committed
107
108
            end_pos = np.where(preds[0, :] == 1)[0]
            if len(end_pos) <= 1:
dyning's avatar
dyning committed
109
110
                preds = preds[0, 1:]
                score = np.mean(probs[0, 1:])
LDOUBLEV's avatar
LDOUBLEV committed
111
            else:
dyning's avatar
dyning committed
112
113
114
115
116
117
118
119
                preds = preds[0, 1:end_pos[1]]
                score = np.mean(probs[0, 1:end_pos[1]])
            preds = preds.reshape(-1)
            preds_text = char_ops.decode(preds)
        
        print("\t index:", preds)
        print("\t word :", preds_text)
        print("\t score :", score)
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    # save for inference model
    target_var = []
    for key, values in outputs.items():
        target_var.append(values)

    fluid.io.save_inference_model(
        "./output/",
        feeded_var_names=['image'],
        target_vars=target_var,
        executor=exe,
        main_program=eval_prog,
        model_filename="model",
        params_filename="params")


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()