web_service.py 5.99 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
bjjwwang's avatar
bjjwwang committed
14
from paddle_serving_server.web_service import WebService, Op
LDOUBLEV's avatar
LDOUBLEV committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            DetResizeForTest(), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
tink2123's avatar
add qps  
tink2123 committed
48
        self.raw_im = data
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = im.shape
tink2123's avatar
add qps  
tink2123 committed
53
        det_img = self.det_preprocess(im)
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
        _, self.new_h, self.new_w = det_img.shape
        return {"x": det_img[np.newaxis, :].copy()}, False, None, ""

    def postprocess(self, input_dicts, fetch_dict, log_id):
        det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
tink2123's avatar
add qps  
tink2123 committed
64
        out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im}
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78

        return out_dict, None, ""


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader(
            char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")

        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
tink2123's avatar
add qps  
tink2123 committed
79
80
81
        raw_im = input_dict["image"]
        data = np.frombuffer(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
86
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
tink2123's avatar
tink2123 committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        ## Many mini-batchs, the type of feed_data is list.
        max_batch_size = 6  # len(dt_boxes)

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = len(dt_boxes)
        batch_size = boxes_size // max_batch_size
        rem = boxes_size % max_batch_size
        for bt_idx in range(0, batch_size + 1):
            imgs = None
            boxes_num_in_one_batch = 0
            if bt_idx == batch_size:
                if rem == 0:
                    continue
                else:
                    boxes_num_in_one_batch = rem
            elif bt_idx < batch_size:
                boxes_num_in_one_batch = max_batch_size
            else:
                _LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
                              format(bt_idx, batch_size))
                break

            start = bt_idx * max_batch_size
            end = start + boxes_num_in_one_batch
            img_list = []
            for box_idx in range(start, end):
                boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
                img_list.append(boximg)
                h, w = boximg.shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                      max_wh_ratio).shape

            imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
            for id, img in enumerate(img_list):
                norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
                imgs[id] = norm_img
            feed = {"x": imgs.copy()}
            feed_list.append(feed)

        return feed_list, False, None, ""
tink2123's avatar
add qps  
tink2123 committed
131

tink2123's avatar
tink2123 committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def postprocess(self, input_dicts, fetch_data, log_id):
        res_list = []
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
                    res_list.append(res[0])
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])

        res = {"res": str(res_list)}
LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
151
152
153
154
155
156
157
158
159
160
        return res, None, ""


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()