export_model.py 7.11 KB
Newer Older
baiyfbupt's avatar
baiyfbupt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))

import argparse

import paddle
from paddle.jit import to_static

from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
31
from ppocr.utils.save_load import load_model
baiyfbupt's avatar
baiyfbupt committed
32
33
34
35
36
37
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader
littletomatodonkey's avatar
littletomatodonkey committed
38
from tools.export_model import export_single_model
39
40


baiyfbupt's avatar
baiyfbupt committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def main():
    ############################################################################################################
    # 1. quantization configs
    ############################################################################################################
    quant_config = {
        # weight preprocess type, default is None and no preprocessing is performed. 
        'weight_preprocess_type': None,
        # activation preprocess type, default is None and no preprocessing is performed.
        'activation_preprocess_type': None,
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. default is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
        # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
        'quantizable_layer_type': ['Conv2D', 'Linear'],
    }
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
WenmuZhou's avatar
WenmuZhou committed
69
    config = merge_config(config, FLAGS.opt)
baiyfbupt's avatar
baiyfbupt committed
70
71
72
73
74
75
76
77
78
    logger = get_logger()
    # build post process

    post_process_class = build_post_process(config['PostProcess'],
                                            config['Global'])

    # build model
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
79
80
81
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
littletomatodonkey's avatar
littletomatodonkey committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    # update SARLoss params
                    assert list(config['Loss']['loss_config_list'][-1].keys())[
                        0] == 'DistillationSARLoss'
                    config['Loss']['loss_config_list'][-1][
                        'DistillationSARLoss']['ignore_index'] = char_num + 1
                    out_channels_list = {}
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            # update SARLoss params
            assert list(config['Loss']['loss_config_list'][1].keys())[
                0] == 'SARLoss'
            if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
                config['Loss']['loss_config_list'][1]['SARLoss'] = {
                    'ignore_index': char_num + 1
                }
            else:
                config['Loss']['loss_config_list'][1]['SARLoss'][
                    'ignore_index'] = char_num + 1
            out_channels_list = {}
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
119
120
121
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

littletomatodonkey's avatar
littletomatodonkey committed
122
123
124
        if config['PostProcess']['name'] == 'SARLabelDecode':  # for SAR model
            config['Loss']['ignore_index'] = char_num - 1

baiyfbupt's avatar
baiyfbupt committed
125
126
127
128
129
130
    model = build_model(config['Architecture'])

    # get QAT model
    quanter = QAT(config=quant_config)
    quanter.quantize(model)

131
    load_model(config, model)
baiyfbupt's avatar
baiyfbupt committed
132
133
134
135
136
137
138
139
    model.eval()

    # build metric
    eval_class = build_metric(config['Metric'])

    # build dataloader
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)

LDOUBLEV's avatar
LDOUBLEV committed
140
    use_srn = config['Architecture']['algorithm'] == "SRN"
andyjpaddle's avatar
andyjpaddle committed
141
    model_type = config['Architecture'].get('model_type', None)
baiyfbupt's avatar
baiyfbupt committed
142
    # start eval
LDOUBLEV's avatar
LDOUBLEV committed
143
    metric = program.eval(model, valid_dataloader, post_process_class,
LDOUBLEV's avatar
LDOUBLEV committed
144
                          eval_class, model_type, use_srn)
Double_V's avatar
Double_V committed
145

baiyfbupt's avatar
baiyfbupt committed
146
    logger.info('metric eval ***************')
147
    for k, v in metric.items():
baiyfbupt's avatar
baiyfbupt committed
148
149
        logger.info('{}:{}'.format(k, v))

150
151
152
    save_path = config["Global"]["save_inference_dir"]

    arch_config = config["Architecture"]
littletomatodonkey's avatar
littletomatodonkey committed
153
154
155

    arch_config = config["Architecture"]

156
    if arch_config["algorithm"] in ["Distillation", ]:  # distillation model
littletomatodonkey's avatar
littletomatodonkey committed
157
        archs = list(arch_config["Models"].values())
158
        for idx, name in enumerate(model.model_name_list):
LDOUBLEV's avatar
LDOUBLEV committed
159
            model.model_list[idx].eval()
160
            sub_model_save_path = os.path.join(save_path, name, "inference")
littletomatodonkey's avatar
littletomatodonkey committed
161
162
            export_single_model(model.model_list[idx], archs[idx],
                                sub_model_save_path, logger, quanter)
163
164
    else:
        save_path = os.path.join(save_path, "inference")
littletomatodonkey's avatar
littletomatodonkey committed
165
        export_single_model(model, arch_config, save_path, logger, quanter)
baiyfbupt's avatar
baiyfbupt committed
166
167
168
169
170


if __name__ == "__main__":
    config, device, logger, vdl_writer = program.preprocess()
    main()