infer_det.py 3.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

LDOUBLEV's avatar
LDOUBLEV committed
21
22
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
23

24
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
25
sys.path.append(__dir__)
26
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
27

LDOUBLEV's avatar
LDOUBLEV committed
28
import cv2
WenmuZhou's avatar
WenmuZhou committed
29
30
import json
import paddle
31

WenmuZhou's avatar
WenmuZhou committed
32
33
34
35
36
37
38
from ppocr.utils.logging import get_logger
from ppocr.data import create_operators, transform
from ppocr.modeling import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import print_dict, get_image_file_list
import tools.program as program
39
40


LDOUBLEV's avatar
LDOUBLEV committed
41
def draw_det_res(dt_boxes, config, img, img_name):
42
43
    if len(dt_boxes) > 0:
        import cv2
LDOUBLEV's avatar
LDOUBLEV committed
44
        src_im = img
45
46
47
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
48
        save_det_path = os.path.dirname(config['Global'][
49
50
51
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
LDOUBLEV's avatar
LDOUBLEV committed
52
        save_path = os.path.join(save_det_path, os.path.basename(img_name))
53
54
55
56
57
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


def main():
WenmuZhou's avatar
WenmuZhou committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'])

    # create data ops
    transforms = []
    for op in config['EVAL']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'keepKeys':
            op[op_name]['keep_keys'] = ['image', 'shape']
        transforms.append(op)

    ops = create_operators(transforms, global_config)
79
80

    save_res_path = config['Global']['save_res_path']
LDOUBLEV's avatar
LDOUBLEV committed
81
82
83
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    model.eval()
    with open(save_res_path, "wb") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)

            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = paddle.to_variable(images)
            print(images.shape)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)
            boxes = post_result[0]['points']
            # write resule
            dt_boxes_json = []
            for box in boxes:
                tmp_json = {"transcription": ""}
                tmp_json['points'] = box.tolist()
                dt_boxes_json.append(tmp_json)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
            fout.write(otstr.encode())
            src_img = cv2.imread(file)
            draw_det_res(boxes, config, src_img, file)
110
111
    logger.info("success!")

WenmuZhou's avatar
WenmuZhou committed
112
113
114
    # save inference model
    # paddle.jit.save(model, 'output/model')

115
116

if __name__ == '__main__':
WenmuZhou's avatar
WenmuZhou committed
117
118
119
120
121
    place, config = program.preprocess()
    paddle.disable_static(place)

    logger = get_logger()
    print_dict(config, logger)
122
    main()