__init__.py 4.11 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import numpy as np
import paddle

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import copy
from paddle.io import DataLoader, DistributedBatchSampler, BatchSampler
import paddle.distributed as dist

from ppocr.data.imaug import transform, create_operators

__all__ = ['build_dataloader', 'transform', 'create_operators']


def build_dataset(config, global_config):
    from ppocr.data.dataset import SimpleDataSet, LMDBDateSet
    support_dict = ['SimpleDataSet', 'LMDBDateSet']

    module_name = config.pop('name')
    assert module_name in support_dict, Exception(
        'DataSet only support {}'.format(support_dict))

    dataset = eval(module_name)(config, global_config)
    return dataset


def build_dataloader(config, device, distributed=False, global_config=None):
    from ppocr.data.dataset import BatchBalancedDataLoader

    config = copy.deepcopy(config)
    dataset_config = config['dataset']

    _dataset_list = []
    file_list = dataset_config.pop('file_list')
    if len(file_list) == 1:
        ratio_list = [1.0]
    else:
        ratio_list = dataset_config.pop('ratio_list')
    for file in file_list:
        dataset_config['file_list'] = file
        _dataset = build_dataset(dataset_config, global_config)
        _dataset_list.append(_dataset)
    data_loader = BatchBalancedDataLoader(_dataset_list, ratio_list,
                                          distributed, device, config['loader'])
    return data_loader, _dataset.info_dict


def test_loader():
    import time
    from tools.program import load_config, ArgsParser

    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)

    place = paddle.CPUPlace()
    paddle.disable_static(place)
    import time

    data_loader, _ = build_dataloader(
        config['TRAIN'], place, global_config=config['Global'])
    start = time.time()
    print(len(data_loader))
    for epoch in range(1):
        print('epoch {} ****************'.format(epoch))
        for i, batch in enumerate(data_loader):
            if i > len(data_loader):
                break
            t = time.time() - start
            start = time.time()
            print('{}, batch : {} ,time {}'.format(i, len(batch[0]), t))

            continue
            import matplotlib.pyplot as plt

            from matplotlib import pyplot as plt
            import cv2
            fig = plt.figure()
            # # cv2.imwrite('img.jpg',batch[0].numpy()[0].transpose((1,2,0)))
            # # cv2.imwrite('bmap.jpg',batch[1].numpy()[0])
            # # cv2.imwrite('bmask.jpg',batch[2].numpy()[0])
            # # cv2.imwrite('smap.jpg',batch[3].numpy()[0])
            # # cv2.imwrite('smask.jpg',batch[4].numpy()[0])
            plt.title('img')
            plt.imshow(batch[0].numpy()[0].transpose((1, 2, 0)))
            # plt.figure()
            # plt.title('bmap')
            # plt.imshow(batch[1].numpy()[0],cmap='Greys')
            # plt.figure()
            # plt.title('bmask')
            # plt.imshow(batch[2].numpy()[0],cmap='Greys')
            # plt.figure()
            # plt.title('smap')
            # plt.imshow(batch[3].numpy()[0],cmap='Greys')
            # plt.figure()
            # plt.title('smask')
            # plt.imshow(batch[4].numpy()[0],cmap='Greys')
            # plt.show()
            # break


if __name__ == '__main__':
    test_loader()