basic_loss.py 3.14 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey committed
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey committed
54
        return loss
littletomatodonkey's avatar
littletomatodonkey committed
55
56
57
58
59
60
61


class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

littletomatodonkey's avatar
littletomatodonkey committed
62
    def __init__(self, act=None):
littletomatodonkey's avatar
littletomatodonkey committed
63
        super().__init__()
64
65
66
67
68
69
70
71
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
littletomatodonkey's avatar
littletomatodonkey committed
72
73

    def forward(self, out1, out2):
74
75
76
77
78
79
        if self.act is not None:
            out1 = self.act(out1)
            out2 = self.act(out2)

        log_out1 = paddle.log(out1)
        log_out2 = paddle.log(out2)
littletomatodonkey's avatar
littletomatodonkey committed
80
        loss = (F.kl_div(
81
            log_out1, out2, reduction='batchmean') + F.kl_div(
littletomatodonkey's avatar
littletomatodonkey committed
82
                log_out2, out1, reduction='batchmean')) / 2.0
littletomatodonkey's avatar
littletomatodonkey committed
83
        return loss
littletomatodonkey's avatar
littletomatodonkey committed
84
85
86
87
88
89
90
91


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey committed
92
    def __init__(self, mode="l2", **kargs):
93
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey committed
94
95
96
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
97
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey committed
98
99
100
101
102
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey committed
103
        return self.loss_func(x, y)