infer_ser_e2e.py 5.05 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image

import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
zhoujun's avatar
zhoujun committed
25
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification
littletomatodonkey's avatar
littletomatodonkey committed
26
27

# relative reference
zhoujun's avatar
zhoujun committed
28
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
littletomatodonkey's avatar
littletomatodonkey committed
29

zhoujun's avatar
zhoujun committed
30
from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
littletomatodonkey's avatar
littletomatodonkey committed
31

zhoujun's avatar
zhoujun committed
32
33
34
35
36
37
38
MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}

littletomatodonkey's avatar
littletomatodonkey committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def parse_ocr_info_for_ser(ocr_result):
    ocr_info = []
    for res in ocr_result:
        ocr_info.append({
            "text": res[1][0],
            "bbox": trans_poly_to_bbox(res[0]),
            "poly": res[0],
        })
    return ocr_info


WenmuZhou's avatar
add re  
WenmuZhou committed
59
60
class SerPredictor(object):
    def __init__(self, args):
zhoujun's avatar
zhoujun committed
61
        self.args = args
WenmuZhou's avatar
add re  
WenmuZhou committed
62
63
64
        self.max_seq_length = args.max_seq_length

        # init ser token and model
zhoujun's avatar
zhoujun committed
65
66
67
        tokenizer_class, base_model_class, model_class = MODELS[
            args.ser_model_type]
        self.tokenizer = tokenizer_class.from_pretrained(
WenmuZhou's avatar
add re  
WenmuZhou committed
68
            args.model_name_or_path)
zhoujun's avatar
zhoujun committed
69
        self.model = model_class.from_pretrained(args.model_name_or_path)
WenmuZhou's avatar
add re  
WenmuZhou committed
70
71
72
        self.model.eval()

        # init ocr_engine
73
74
        from paddleocr import PaddleOCR

WenmuZhou's avatar
add re  
WenmuZhou committed
75
        self.ocr_engine = PaddleOCR(
76
77
            rec_model_dir=args.rec_model_dir,
            det_model_dir=args.det_model_dir,
WenmuZhou's avatar
add re  
WenmuZhou committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            use_angle_cls=False,
            show_log=False)
        # init dict
        label2id_map, self.id2label_map = get_bio_label_maps(
            args.label_map_path)
        self.label2id_map_for_draw = dict()
        for key in label2id_map:
            if key.startswith("I-"):
                self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
            else:
                self.label2id_map_for_draw[key] = label2id_map[key]

    def __call__(self, img):
        ocr_result = self.ocr_engine.ocr(img, cls=False)

        ocr_info = parse_ocr_info_for_ser(ocr_result)

        inputs = preprocess(
            tokenizer=self.tokenizer,
            ori_img=img,
            ocr_info=ocr_info,
            max_seq_len=self.max_seq_length)

zhoujun's avatar
zhoujun committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        if self.args.ser_model_type == 'LayoutLM':
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
        elif self.args.ser_model_type == 'LayoutXLM':
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                image=inputs["image"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
            preds = preds[0]
WenmuZhou's avatar
add re  
WenmuZhou committed
115
116
117
118
119
120

        preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
        ocr_info = merge_preds_list_with_ocr_info(
            ocr_info, inputs["segment_offset_id"], preds,
            self.label2id_map_for_draw)
        return ocr_info, inputs
littletomatodonkey's avatar
littletomatodonkey committed
121
122


WenmuZhou's avatar
add re  
WenmuZhou committed
123
124
125
if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
littletomatodonkey's avatar
littletomatodonkey committed
126
127
128
129
130

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
WenmuZhou's avatar
add re  
WenmuZhou committed
131
    ser_engine = SerPredictor(args)
WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey committed
136
        for idx, img_path in enumerate(infer_imgs):
zhoujun's avatar
zhoujun committed
137
138
139
140
141
            save_img_path = os.path.join(
                args.output_dir,
                os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
            print("process: [{}/{}], save result to {}".format(
                idx, len(infer_imgs), save_img_path))
littletomatodonkey's avatar
littletomatodonkey committed
142
143
144

            img = cv2.imread(img_path)

WenmuZhou's avatar
add re  
WenmuZhou committed
145
            result, _ = ser_engine(img)
littletomatodonkey's avatar
littletomatodonkey committed
146
147
            fout.write(img_path + "\t" + json.dumps(
                {
WenmuZhou's avatar
add re  
WenmuZhou committed
148
                    "ser_resule": result,
littletomatodonkey's avatar
littletomatodonkey committed
149
150
                }, ensure_ascii=False) + "\n")

WenmuZhou's avatar
add re  
WenmuZhou committed
151
            img_res = draw_ser_results(img, result)
zhoujun's avatar
zhoujun committed
152
            cv2.imwrite(save_img_path, img_res)