det_model.py 4.96 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class DetModel(object):
    def __init__(self, params):
        """
        Detection module for OCR text detection.
        args:
            params (dict): the super parameters for detection module.
        """
        global_params = params['Global']
        self.algorithm = global_params['algorithm']

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.image_shape = global_params['image_shape']

    def create_feed(self, mode):
        """
        create Dataloader feeds
        args:
            mode (str): 'train' for training  or else for evaluation
        return: (image, corresponding label, dataloader)
        """
        image_shape = deepcopy(self.image_shape)
        image = fluid.layers.data(
            name='image', shape=image_shape, dtype='float32')
        if mode == "train":
            if self.algorithm == "EAST":
                score = fluid.layers.data(
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
71
                    name='score',
                    shape=[
                        1, int(image_shape[1] // 4), int(image_shape[2] // 4)
                    ],
                    dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
72
                geo = fluid.layers.data(
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
76
77
                    name='geo',
                    shape=[
                        9, int(image_shape[1] // 4), int(image_shape[2] // 4)
                    ],
                    dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
78
                mask = fluid.layers.data(
LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
83
                    name='mask',
                    shape=[
                        1, int(image_shape[1] // 4), int(image_shape[2] // 4)
                    ],
                    dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                feed_list = [image, score, geo, mask]
                labels = {'score': score, 'geo': geo, 'mask': mask}
            elif self.algorithm == "DB":
                shrink_map = fluid.layers.data(
                    name='shrink_map', shape=image_shape[1:], dtype='float32')
                shrink_mask = fluid.layers.data(
                    name='shrink_mask', shape=image_shape[1:], dtype='float32')
                threshold_map = fluid.layers.data(
                    name='threshold_map',
                    shape=image_shape[1:],
                    dtype='float32')
                threshold_mask = fluid.layers.data(
                    name='threshold_mask',
                    shape=image_shape[1:],
                    dtype='float32')
                feed_list=[image, shrink_map, shrink_mask,\
                    threshold_map, threshold_mask]
                labels = {'shrink_map':shrink_map,\
                    'shrink_mask':shrink_mask,\
                    'threshold_map':threshold_map,\
                    'threshold_mask':threshold_mask}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
            labels = None
            loader = None
        return image, labels, loader

    def __call__(self, mode):
        """
        run forward of defined module
        args:
            mode (str): 'train' for training; 'export'  for inference,
                others for evaluation]
        """
        image, labels, loader = self.create_feed(mode)
        conv_feas = self.backbone(image)
124
125
126
127
        if self.algorithm == "DB":
            predicts = self.head(conv_feas, mode)
        else:
            predicts = self.head(conv_feas)
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
133
134
        if mode == "train":
            losses = self.loss(predicts, labels)
            return loader, losses
        elif mode == "export":
            return [image, predicts]
        else:
            return loader, predicts