"...bigcode_eval/tasks/codexglue_code_to_text.py" did not exist on "291fc518310987fa462ea9a5cde6e9abea9d8cb2"
train_ser.py 8.81 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
WenmuZhou's avatar
add re  
WenmuZhou committed
16
17
18
19
20
21
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

littletomatodonkey's avatar
littletomatodonkey committed
22
import random
zhoujun's avatar
zhoujun committed
23
import time
littletomatodonkey's avatar
littletomatodonkey committed
24
25
26
27
28
29
30
31
32
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
zhoujun's avatar
zhoujun committed
33
34
from utils import parse_args, get_bio_label_maps, print_arguments, set_seed
from eval_ser import evaluate
WenmuZhou's avatar
add re  
WenmuZhou committed
35
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey committed
36
37
38
39


def train(args):
    os.makedirs(args.output_dir, exist_ok=True)
WenmuZhou's avatar
add re  
WenmuZhou committed
40
41
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)
littletomatodonkey's avatar
littletomatodonkey committed
42
43
44
45
46
47
48
49
50

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
zhoujun's avatar
zhoujun committed
51
52
53
54
55
56
57
58
59
    if not args.resume:
        model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
        model = LayoutXLMForTokenClassification(
            model, num_classes=len(label2id_map), dropout=None)
        logger.info('train from scratch')
    else:
        logger.info('resume from {}'.format(args.model_name_or_path))
        model = LayoutXLMForTokenClassification.from_pretrained(
            args.model_name_or_path)
littletomatodonkey's avatar
littletomatodonkey committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')
zhoujun's avatar
zhoujun committed
76
77
78
79
80
81
82
83
84
85
86
    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')
littletomatodonkey's avatar
littletomatodonkey committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)

    args.train_batch_size = args.per_gpu_train_batch_size * max(
        1, paddle.distributed.get_world_size())

    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

zhoujun's avatar
zhoujun committed
101
102
103
104
105
106
107
    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

littletomatodonkey's avatar
littletomatodonkey committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed) = %d",
        args.train_batch_size * paddle.distributed.get_world_size(), )
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
WenmuZhou's avatar
WenmuZhou committed
142
    set_seed(args.seed)
littletomatodonkey's avatar
littletomatodonkey committed
143
144
    best_metrics = None

zhoujun's avatar
zhoujun committed
145
146
147
148
149
150
151
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    print_step = 1
    model.train()
littletomatodonkey's avatar
littletomatodonkey committed
152
153
    for epoch_id in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
zhoujun's avatar
zhoujun committed
154
155
156
            train_reader_cost += time.time() - reader_start

            train_start = time.time()
littletomatodonkey's avatar
littletomatodonkey committed
157
            outputs = model(**batch)
zhoujun's avatar
zhoujun committed
158
159
            train_run_cost += time.time() - train_start

littletomatodonkey's avatar
littletomatodonkey committed
160
161
162
163
164
165
166
167
168
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs[0]
            loss = loss.mean()
            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            lr_scheduler.step()  # Update learning rate schedule
            optimizer.clear_grad()
            global_step += 1
zhoujun's avatar
zhoujun committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            total_samples += batch['image'].shape[0]

            if step % print_step == 0:
                logger.info(
                    "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
                    format(epoch_id, args.num_train_epochs, step,
                           len(train_dataloader), global_step,
                           loss.numpy()[0],
                           lr_scheduler.get_lr(), train_reader_cost /
                           print_step, (train_reader_cost + train_run_cost) /
                           print_step, total_samples / print_step, total_samples
                           / (train_reader_cost + train_run_cost)))

                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
littletomatodonkey's avatar
littletomatodonkey committed
185
186
187
188
189
190
191

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                # Only evaluate when single GPU otherwise metrics may not average well
                if paddle.distributed.get_rank(
                ) == 0 and args.evaluate_during_training:
zhoujun's avatar
zhoujun committed
192
193
194
                    results, _ = evaluate(
                        args, model, tokenizer, eval_dataloader, label2id_map,
                        id2label_map, pad_token_label_id, logger)
littletomatodonkey's avatar
littletomatodonkey committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

                    if best_metrics is None or results["f1"] >= best_metrics[
                            "f1"]:
                        best_metrics = copy.deepcopy(results)
                        output_dir = os.path.join(args.output_dir, "best_model")
                        os.makedirs(output_dir, exist_ok=True)
                        if paddle.distributed.get_rank() == 0:
                            model.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
                            paddle.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)

                    logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
                        epoch_id, args.num_train_epochs, step,
                        len(train_dataloader), results))
                    if best_metrics is not None:
                        logger.info("best metrics: {}".format(best_metrics))

zhoujun's avatar
zhoujun committed
216
            if paddle.distributed.get_rank() == 0:
littletomatodonkey's avatar
littletomatodonkey committed
217
                # Save model checkpoint
zhoujun's avatar
zhoujun committed
218
                output_dir = os.path.join(args.output_dir, "latest_model")
littletomatodonkey's avatar
littletomatodonkey committed
219
220
221
222
223
224
225
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)
zhoujun's avatar
zhoujun committed
226
            reader_start = time.time()
littletomatodonkey's avatar
littletomatodonkey committed
227
228
229
230
231
232
    return global_step, tr_loss / global_step


if __name__ == "__main__":
    args = parse_args()
    train(args)