eval_det_iou.py 8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from collections import namedtuple
import numpy as np
from shapely.geometry import Polygon
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
9
"""
reference from :
https://github.com/MhLiao/DB/blob/3c32b808d4412680310d3d28eeb6a2d5bf1566c5/concern/icdar2015_eval/detection/iou.py#L8
"""
LDOUBLEV's avatar
LDOUBLEV committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


class DetectionIoUEvaluator(object):
    def __init__(self, iou_constraint=0.5, area_precision_constraint=0.5):
        self.iou_constraint = iou_constraint
        self.area_precision_constraint = area_precision_constraint

    def evaluate_image(self, gt, pred):
        def get_union(pD, pG):
            return Polygon(pD).union(Polygon(pG)).area

        def get_intersection_over_union(pD, pG):
            return get_intersection(pD, pG) / get_union(pD, pG)

        def get_intersection(pD, pG):
            return Polygon(pD).intersection(Polygon(pG)).area

        def compute_ap(confList, matchList, numGtCare):
            correct = 0
            AP = 0
            if len(confList) > 0:
                confList = np.array(confList)
                matchList = np.array(matchList)
                sorted_ind = np.argsort(-confList)
                confList = confList[sorted_ind]
                matchList = matchList[sorted_ind]
                for n in range(len(confList)):
                    match = matchList[n]
                    if match:
                        correct += 1
                        AP += float(correct) / (n + 1)

                if numGtCare > 0:
                    AP /= numGtCare

            return AP

        perSampleMetrics = {}

        matchedSum = 0

        Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')

        numGlobalCareGt = 0
        numGlobalCareDet = 0

        arrGlobalConfidences = []
        arrGlobalMatches = []

        recall = 0
        precision = 0
        hmean = 0

        detMatched = 0

        iouMat = np.empty([1, 1])

        gtPols = []
        detPols = []

        gtPolPoints = []
        detPolPoints = []

        # Array of Ground Truth Polygons' keys marked as don't Care
        gtDontCarePolsNum = []
        # Array of Detected Polygons' matched with a don't Care GT
        detDontCarePolsNum = []

        pairs = []
        detMatchedNums = []

        arrSampleConfidences = []
        arrSampleMatch = []

        evaluationLog = ""

        # print(len(gt))
        for n in range(len(gt)):
            points = gt[n]['points']
            # transcription = gt[n]['text']
            dontCare = gt[n]['ignore']
            points = Polygon(points)
            points = points.buffer(0)
            if not Polygon(points).is_valid or not Polygon(points).is_simple:
                continue

            gtPol = points
            gtPols.append(gtPol)
            gtPolPoints.append(points)
            if dontCare:
                gtDontCarePolsNum.append(len(gtPols) - 1)

        evaluationLog += "GT polygons: " + str(len(gtPols)) + (
            " (" + str(len(gtDontCarePolsNum)) + " don't care)\n"
            if len(gtDontCarePolsNum) > 0 else "\n")

        for n in range(len(pred)):
            points = pred[n]['points']
            points = Polygon(points)
            points = points.buffer(0)
            if not Polygon(points).is_valid or not Polygon(points).is_simple:
                continue

            detPol = points
            detPols.append(detPol)
            detPolPoints.append(points)
            if len(gtDontCarePolsNum) > 0:
                for dontCarePol in gtDontCarePolsNum:
                    dontCarePol = gtPols[dontCarePol]
                    intersected_area = get_intersection(dontCarePol, detPol)
                    pdDimensions = Polygon(detPol).area
                    precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
                    if (precision > self.area_precision_constraint):
                        detDontCarePolsNum.append(len(detPols) - 1)
                        break

        evaluationLog += "DET polygons: " + str(len(detPols)) + (
            " (" + str(len(detDontCarePolsNum)) + " don't care)\n"
            if len(detDontCarePolsNum) > 0 else "\n")

        if len(gtPols) > 0 and len(detPols) > 0:
            # Calculate IoU and precision matrixs
            outputShape = [len(gtPols), len(detPols)]
            iouMat = np.empty(outputShape)
            gtRectMat = np.zeros(len(gtPols), np.int8)
            detRectMat = np.zeros(len(detPols), np.int8)
            for gtNum in range(len(gtPols)):
                for detNum in range(len(detPols)):
                    pG = gtPols[gtNum]
                    pD = detPols[detNum]
                    iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG)

            for gtNum in range(len(gtPols)):
                for detNum in range(len(detPols)):
                    if gtRectMat[gtNum] == 0 and detRectMat[
                            detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum:
                        if iouMat[gtNum, detNum] > self.iou_constraint:
                            gtRectMat[gtNum] = 1
                            detRectMat[detNum] = 1
                            detMatched += 1
                            pairs.append({'gt': gtNum, 'det': detNum})
                            detMatchedNums.append(detNum)
                            evaluationLog += "Match GT #" + \
                                str(gtNum) + " with Det #" + str(detNum) + "\n"

        numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
        numDetCare = (len(detPols) - len(detDontCarePolsNum))
        if numGtCare == 0:
            recall = float(1)
            precision = float(0) if numDetCare > 0 else float(1)
        else:
            recall = float(detMatched) / numGtCare
            precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare

        hmean = 0 if (precision + recall) == 0 else 2.0 * \
            precision * recall / (precision + recall)

        matchedSum += detMatched
        numGlobalCareGt += numGtCare
        numGlobalCareDet += numDetCare

        perSampleMetrics = {
            'precision': precision,
            'recall': recall,
            'hmean': hmean,
            'pairs': pairs,
            'iouMat': [] if len(detPols) > 100 else iouMat.tolist(),
            'gtPolPoints': gtPolPoints,
            'detPolPoints': detPolPoints,
            'gtCare': numGtCare,
            'detCare': numDetCare,
            'gtDontCare': gtDontCarePolsNum,
            'detDontCare': detDontCarePolsNum,
            'detMatched': detMatched,
            'evaluationLog': evaluationLog
        }

        return perSampleMetrics

    def combine_results(self, results):
        numGlobalCareGt = 0
        numGlobalCareDet = 0
        matchedSum = 0
        for result in results:
            numGlobalCareGt += result['gtCare']
            numGlobalCareDet += result['detCare']
            matchedSum += result['detMatched']

        methodRecall = 0 if numGlobalCareGt == 0 else float(
            matchedSum) / numGlobalCareGt
        methodPrecision = 0 if numGlobalCareDet == 0 else float(
            matchedSum) / numGlobalCareDet
        methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \
            methodRecall * methodPrecision / (methodRecall + methodPrecision)
        # print(methodRecall, methodPrecision, methodHmean)
        # sys.exit(-1)
        methodMetrics = {
            'precision': methodPrecision,
            'recall': methodRecall,
            'hmean': methodHmean
        }

        return methodMetrics


if __name__ == '__main__':
    evaluator = DetectionIoUEvaluator()
    gts = [[{
        'points': [(0, 0), (1, 0), (1, 1), (0, 1)],
        'text': 1234,
        'ignore': False,
    }, {
        'points': [(2, 2), (3, 2), (3, 3), (2, 3)],
        'text': 5678,
        'ignore': False,
    }]]
    preds = [[{
        'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)],
        'text': 123,
        'ignore': False,
    }]]
    results = []
    for gt, pred in zip(gts, preds):
        results.append(evaluator.evaluate_image(gt, pred))
    metrics = evaluator.combine_results(results)
    print(metrics)