multiheadAttention.py 5.96 KB
Newer Older
Topdu's avatar
Topdu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Linear
from paddle.nn.initializer import XavierUniform as xavier_uniform_
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)


class MultiheadAttentionOptim(nn.Layer):
    r"""Allows the model to jointly attend to information
    from different representation subspaces.
    See reference: Attention Is All You Need

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)

    Args:
        embed_dim: total dimension of the model
        num_heads: parallel attention layers, or heads

    Examples::

        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    """

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
        super(MultiheadAttentionOptim, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)

        self._reset_parameters()

        self.conv1 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv2 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv3 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))

    def _reset_parameters(self):


        xavier_uniform_(self.out_proj.weight)


    def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
                need_weights=True, static_kv=False, attn_mask=None):
        """
        Inputs of forward function
            query: [target length, batch size, embed dim]
            key: [sequence length, batch size, embed dim]
            value: [sequence length, batch size, embed dim]
            key_padding_mask: if True, mask padding based on batch size
            incremental_state: if provided, previous time steps are cashed
            need_weights: output attn_output_weights
            static_kv: key and value are static

        Outputs of forward function
            attn_output: [target length, batch size, embed dim]
            attn_output_weights: [batch size, target length, sequence length]
        """


        tgt_len, bsz, embed_dim = query.shape
        assert embed_dim == self.embed_dim
        assert list(query.shape) == [tgt_len, bsz, embed_dim]
        assert key.shape == value.shape

        q = self._in_proj_q(query)
        k = self._in_proj_k(key)
        v = self._in_proj_v(value)
        q *= self.scaling


        q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])


        src_len = k.shape[1]

        if key_padding_mask is not None:
            assert key_padding_mask.shape[0] == bsz
            assert key_padding_mask.shape[1] == src_len

        
        attn_output_weights = paddle.bmm(q, k.transpose([0,2,1]))
        assert list(attn_output_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            attn_output_weights += attn_mask
        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
            
            y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
           
            y = paddle.where(key==0.,key, y)

            attn_output_weights += y
            attn_output_weights = attn_output_weights.reshape([bsz*self.num_heads, tgt_len, src_len])

        attn_output_weights = F.softmax(
            attn_output_weights.astype('float32'), axis=-1,
            dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16 else attn_output_weights.dtype)
        attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)

        attn_output = paddle.bmm(attn_output_weights, v)
        assert list(attn_output.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
        attn_output = attn_output.transpose([1, 0,2]).reshape([tgt_len, bsz, embed_dim])
        attn_output = self.out_proj(attn_output)

        if need_weights:
            # average attention weights over heads
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            attn_output_weights = attn_output_weights.sum(axis=1) / self.num_heads
        else:
            attn_output_weights = None

        return attn_output, attn_output_weights


    def _in_proj_q(self, query):
        query = query.transpose([1, 2, 0])
        query = paddle.unsqueeze(query, axis=2)
        res = self.conv1(query)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_k(self, key):
        
        key = key.transpose([1, 2, 0])
        key = paddle.unsqueeze(key, axis=2)
        res = self.conv2(key)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_v(self, value):
        
        value = value.transpose([1,2,0])#(1, 2, 0)
        value = paddle.unsqueeze(value, axis=2)
        res = self.conv3(value)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
topduke's avatar
topduke committed
157
        return res