metric.py 1.73 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import paddle
import paddle.nn.functional as F
from collections import OrderedDict


def create_metric(out,
                  label,
                  architecture=None,
                  topk=5,
                  classes_num=1000,
                  use_distillation=False,
                  mode="train"):
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes
        use_distillation(bool): whether to use distillation training
        mode(str): mode, train/valid

    Returns:
        fetchs(dict): dict of measures
    """
    # if architecture["name"] == "GoogLeNet":
    #     assert len(out) == 3, "GoogLeNet should have 3 outputs"
    #     out = out[0]
    # else:
    #     # just need student label to get metrics
    #     if use_distillation:
    #         out = out[1]
    softmax_out = F.softmax(out)

    fetchs = OrderedDict()
    # set top1 to fetchs
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
    # set topk to fetchs
    k = min(topk, classes_num)
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)

    # multi cards' eval
    if mode != "train" and paddle.distributed.get_world_size() > 1:
        top1 = paddle.distributed.all_reduce(
            top1, op=paddle.distributed.ReduceOp.
            SUM) / paddle.distributed.get_world_size()
        topk = paddle.distributed.all_reduce(
            topk, op=paddle.distributed.ReduceOp.
            SUM) / paddle.distributed.get_world_size()

    fetchs['top1'] = top1
    topk_name = 'top{}'.format(k)
    fetchs[topk_name] = topk

    return fetchs