fce_postprocess.py 11.3 KB
Newer Older
zhiminzhang0830's avatar
zhiminzhang0830 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import paddle
from numpy.fft import ifft
import Polygon as plg


def points2polygon(points):
    """Convert k points to 1 polygon.

    Args:
        points (ndarray or list): A ndarray or a list of shape (2k)
            that indicates k points.

    Returns:
        polygon (Polygon): A polygon object.
    """
    if isinstance(points, list):
        points = np.array(points)

    assert isinstance(points, np.ndarray)
    assert (points.size % 2 == 0) and (points.size >= 8)

    point_mat = points.reshape([-1, 2])
    return plg.Polygon(point_mat)


def poly_intersection(poly_det, poly_gt):
    """Calculate the intersection area between two polygon.

    Args:
        poly_det (Polygon): A polygon predicted by detector.
        poly_gt (Polygon): A gt polygon.

    Returns:
        intersection_area (float): The intersection area between two polygons.
    """
    assert isinstance(poly_det, plg.Polygon)
    assert isinstance(poly_gt, plg.Polygon)

    poly_inter = poly_det & poly_gt
    if len(poly_inter) == 0:
        return 0, poly_inter
    return poly_inter.area(), poly_inter


def poly_union(poly_det, poly_gt):
    """Calculate the union area between two polygon.

    Args:
        poly_det (Polygon): A polygon predicted by detector.
        poly_gt (Polygon): A gt polygon.

    Returns:
        union_area (float): The union area between two polygons.
    """
    assert isinstance(poly_det, plg.Polygon)
    assert isinstance(poly_gt, plg.Polygon)

    area_det = poly_det.area()
    area_gt = poly_gt.area()
    area_inters, _ = poly_intersection(poly_det, poly_gt)
    return area_det + area_gt - area_inters


def valid_boundary(x, with_score=True):
    num = len(x)
    if num < 8:
        return False
    if num % 2 == 0 and (not with_score):
        return True
    if num % 2 == 1 and with_score:
        return True

    return False


def boundary_iou(src, target):
    """Calculate the IOU between two boundaries.

    Args:
       src (list): Source boundary.
       target (list): Target boundary.

    Returns:
       iou (float): The iou between two boundaries.
    """
    assert valid_boundary(src, False)
    assert valid_boundary(target, False)
    src_poly = points2polygon(src)
    target_poly = points2polygon(target)

    return poly_iou(src_poly, target_poly)


def poly_iou(poly_det, poly_gt):
    """Calculate the IOU between two polygons.

    Args:
        poly_det (Polygon): A polygon predicted by detector.
        poly_gt (Polygon): A gt polygon.

    Returns:
        iou (float): The IOU between two polygons.
    """
    assert isinstance(poly_det, plg.Polygon)
    assert isinstance(poly_gt, plg.Polygon)
    area_inters, _ = poly_intersection(poly_det, poly_gt)
    area_union = poly_union(poly_det, poly_gt)
    if area_union == 0:
        return 0.0
    return area_inters / area_union


def poly_nms(polygons, threshold):
    assert isinstance(polygons, list)

    polygons = np.array(sorted(polygons, key=lambda x: x[-1]))

    keep_poly = []
    index = [i for i in range(polygons.shape[0])]

    while len(index) > 0:
        keep_poly.append(polygons[index[-1]].tolist())
        A = polygons[index[-1]][:-1]
        index = np.delete(index, -1)

        iou_list = np.zeros((len(index), ))
        for i in range(len(index)):
            B = polygons[index[i]][:-1]

            iou_list[i] = boundary_iou(A, B)
        remove_index = np.where(iou_list > threshold)
        index = np.delete(index, remove_index)

    return keep_poly


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1:h + 1, 1:w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
    canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)

    return ~canvas | input_mask


def fourier2poly(fourier_coeff, num_reconstr_points=50):
    """ Inverse Fourier transform
        Args:
            fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
                with n and k being candidates number and Fourier degree
                respectively.
            num_reconstr_points (int): Number of reconstructed polygon points.
        Returns:
            Polygons (ndarray): The reconstructed polygons shaped (n, n')
        """

    a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
    k = (len(fourier_coeff[0]) - 1) // 2

    a[:, 0:k + 1] = fourier_coeff[:, k:]
    a[:, -k:] = fourier_coeff[:, :k]

    poly_complex = ifft(a) * num_reconstr_points
    polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
    polygon[:, :, 0] = poly_complex.real
    polygon[:, :, 1] = poly_complex.imag
    return polygon.astype('int32').reshape((len(fourier_coeff), -1))


def fcenet_decode(preds,
                  fourier_degree,
                  num_reconstr_points,
                  scale,
                  alpha=1.0,
                  beta=2.0,
                  text_repr_type='poly',
                  score_thr=0.3,
                  nms_thr=0.1):
    """Decoding predictions of FCENet to instances.

    Args:
        preds (list(Tensor)): The head output tensors.
        fourier_degree (int): The maximum Fourier transform degree k.
        num_reconstr_points (int): The points number of the polygon
            reconstructed from predicted Fourier coefficients.
        scale (int): The down-sample scale of the prediction.
        alpha (float) : The parameter to calculate final scores. Score_{final}
                = (Score_{text region} ^ alpha)
                * (Score_{text center region}^ beta)
        beta (float) : The parameter to calculate final score.
        text_repr_type (str):  Boundary encoding type 'poly' or 'quad'.
        score_thr (float) : The threshold used to filter out the final
            candidates.
        nms_thr (float) :  The threshold of nms.

    Returns:
        boundaries (list[list[float]]): The instance boundary and confidence
            list.
    """
    assert isinstance(preds, list)
    assert len(preds) == 2
    assert text_repr_type in ['poly', 'quad']

    # import pdb;pdb.set_trace()
    cls_pred = preds[0][0]
    # tr_pred = F.softmax(cls_pred[0:2], axis=0).cpu().numpy()
    # tcl_pred = F.softmax(cls_pred[2:], axis=0).cpu().numpy()

    tr_pred = cls_pred[0:2]
    tcl_pred = cls_pred[2:]

    reg_pred = preds[1][0].transpose([1, 2, 0])  #.cpu().numpy()
    x_pred = reg_pred[:, :, :2 * fourier_degree + 1]
    y_pred = reg_pred[:, :, 2 * fourier_degree + 1:]

    score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta)
    tr_pred_mask = (score_pred) > score_thr
    tr_mask = fill_hole(tr_pred_mask)

    tr_contours, _ = cv2.findContours(
        tr_mask.astype(np.uint8), cv2.RETR_TREE,
        cv2.CHAIN_APPROX_SIMPLE)  # opencv4

    mask = np.zeros_like(tr_mask)
    boundaries = []
    for cont in tr_contours:
        deal_map = mask.copy().astype(np.int8)
        cv2.drawContours(deal_map, [cont], -1, 1, -1)

        score_map = score_pred * deal_map
        score_mask = score_map > 0
        xy_text = np.argwhere(score_mask)
        dxy = xy_text[:, 1] + xy_text[:, 0] * 1j

        x, y = x_pred[score_mask], y_pred[score_mask]
        c = x + y * 1j
        c[:, fourier_degree] = c[:, fourier_degree] + dxy
        c *= scale

        polygons = fourier2poly(c, num_reconstr_points)
        score = score_map[score_mask].reshape(-1, 1)
        polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)

        boundaries = boundaries + polygons

    boundaries = poly_nms(boundaries, nms_thr)

    if text_repr_type == 'quad':
        new_boundaries = []
        for boundary in boundaries:
            poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
            score = boundary[-1]
            points = cv2.boxPoints(cv2.minAreaRect(poly))
            points = np.int0(points)
            new_boundaries.append(points.reshape(-1).tolist() + [score])

    return boundaries


class FCEPostProcess(object):
    """
    The post process for FCENet.
    """

    def __init__(self,
                 scales,
                 fourier_degree=5,
                 num_reconstr_points=50,
                 decoding_type='fcenet',
                 score_thr=0.3,
                 nms_thr=0.1,
                 alpha=1.0,
                 beta=1.0,
                 text_repr_type='poly',
                 **kwargs):

        self.scales = scales
        self.fourier_degree = fourier_degree
        self.num_reconstr_points = num_reconstr_points
        self.decoding_type = decoding_type
        self.score_thr = score_thr
        self.nms_thr = nms_thr
        self.alpha = alpha
        self.beta = beta
        self.text_repr_type = text_repr_type

    def __call__(self, preds, shape_list):
        score_maps = []
        for key, value in preds.items():
            if isinstance(value, paddle.Tensor):
                value = value.numpy()
            cls_res = value[:, :4, :, :]
            reg_res = value[:, 4:, :, :]
            score_maps.append([cls_res, reg_res])

        return self.get_boundary(score_maps, shape_list)

    def resize_boundary(self, boundaries, scale_factor):
        """Rescale boundaries via scale_factor.

        Args:
            boundaries (list[list[float]]): The boundary list. Each boundary
            with size 2k+1 with k>=4.
            scale_factor(ndarray): The scale factor of size (4,).

        Returns:
            boundaries (list[list[float]]): The scaled boundaries.
        """
        # assert check_argument.is_2dlist(boundaries)
        # assert isinstance(scale_factor, np.ndarray)
        # assert scale_factor.shape[0] == 4

        boxes = []
        scores = []
        for b in boundaries:
            sz = len(b)
            valid_boundary(b, True)
            scores.append(b[-1])
            b = (np.array(b[:sz - 1]) *
                 (np.tile(scale_factor[:2], int(
                     (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
            boxes.append(np.array(b).reshape([-1, 2]))

        return np.array(boxes, dtype=np.float32), scores

    def get_boundary(self, score_maps, shape_list):
        assert len(score_maps) == len(self.scales)
        # import pdb;pdb.set_trace()
        boundaries = []
        for idx, score_map in enumerate(score_maps):
            scale = self.scales[idx]
            boundaries = boundaries + self._get_boundary_single(score_map,
                                                                scale)

        # nms
        boundaries = poly_nms(boundaries, self.nms_thr)
        # if rescale:
        # import pdb;pdb.set_trace()
        boundaries, scores = self.resize_boundary(
            boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])

        boxes_batch = [dict(points=boundaries, scores=scores)]
        return boxes_batch

    def _get_boundary_single(self, score_map, scale):
        assert len(score_map) == 2
        assert score_map[1].shape[1] == 4 * self.fourier_degree + 2

        return fcenet_decode(
            preds=score_map,
            fourier_degree=self.fourier_degree,
            num_reconstr_points=self.num_reconstr_points,
            scale=scale,
            alpha=self.alpha,
            beta=self.beta,
            text_repr_type=self.text_repr_type,
            score_thr=self.score_thr,
            nms_thr=self.nms_thr)