det_mv3_pse.yml 3.29 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Global:
  use_gpu: true
  epoch_num: 600
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/det_mv3_pse/
  save_epoch_step: 600
  # evaluation is run every 63 iterations
  eval_batch_step: [ 0,63 ]
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_pse/predicts_pse.txt

Architecture:
  model_type: det
  algorithm: PSE
  Transform: null
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  Neck:
    name: FPN
    out_channels: 96
  Head:
    name: PSEHead
    hidden_dim: 96
    out_channels: 7

Loss:
  name: PSELoss
  alpha: 0.7
  ohem_ratio: 3
  kernel_sample_mask: pred
  reduction: none

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Step
    learning_rate: 0.001
    step_size: 200
    gamma: 0.1
  regularizer:
    name: 'L2'
    factor: 0.0005

PostProcess:
  name: PSEPostProcess
  thresh: 0
  box_thresh: 0.85
  min_area: 16
WenmuZhou's avatar
WenmuZhou committed
59
  box_type: quad # 'quad' or 'poly'
WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
  scale: 1

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [ 1.0 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - ColorJitter:
          brightness: 0.12549019607843137
          saturation: 0.5
      - IaaAugment:
          augmenter_args:
            - { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
      - MakePseGt:
          kernel_num: 7
          min_shrink_ratio: 0.4
          size: 640
      - RandomCropImgMask:
          size: [ 640,640 ]
          main_key: gt_text
          crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 16
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    ratio_list: [ 1.0 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          limit_side_len: 736
          limit_type: min
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 8