rec_nrtr_head.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Topdu's avatar
Topdu committed
15
16
17
import math
import paddle
import copy
18
from paddle import nn
Topdu's avatar
Topdu committed
19
20
21
22
23
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
Topdu's avatar
Topdu committed
24
from ppocr.modeling.heads.multiheadAttention import MultiheadAttention
Topdu's avatar
Topdu committed
25
26
27
28
29
30
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)

31

Topdu's avatar
Topdu committed
32
class Transformer(nn.Layer):
33
    """A transformer model. User is able to modify the attributes as needed. The architechture
Topdu's avatar
Topdu committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).

    """

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 beam_size=0,
                 num_decoder_layers=6,
                 dim_feedforward=1024,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1,
                 custom_encoder=None,
                 custom_decoder=None,
                 in_channels=0,
                 out_channels=0,
                 dst_vocab_size=99,
                 scale_embedding=True):
Topdu's avatar
Topdu committed
66
        super(Transformer, self).__init__()
Topdu's avatar
Topdu committed
67
68
69
70
        self.embedding = Embeddings(
            d_model=d_model,
            vocab=dst_vocab_size,
            padding_idx=0,
71
            scale_embedding=scale_embedding)
Topdu's avatar
Topdu committed
72
73
        self.positional_encoding = PositionalEncoding(
            dropout=residual_dropout_rate,
74
            dim=d_model, )
Topdu's avatar
Topdu committed
75
76
77
        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
78
79
80
81
82
83
            if num_encoder_layers > 0:
                encoder_layer = TransformerEncoderLayer(
                    d_model, nhead, dim_feedforward, attention_dropout_rate,
                    residual_dropout_rate)
                self.encoder = TransformerEncoder(encoder_layer,
                                                  num_encoder_layers)
Topdu's avatar
Topdu committed
84
85
86
87
88
89
            else:
                self.encoder = None

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
90
91
92
            decoder_layer = TransformerDecoderLayer(
                d_model, nhead, dim_feedforward, attention_dropout_rate,
                residual_dropout_rate)
Topdu's avatar
Topdu committed
93
94
95
96
97
98
99
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)

        self._reset_parameters()
        self.beam_size = beam_size
        self.d_model = d_model
        self.nhead = nhead
        self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
100
101
        w0 = np.random.normal(0.0, d_model**-0.5,
                              (d_model, dst_vocab_size)).astype(np.float32)
Topdu's avatar
Topdu committed
102
103
104
105
        self.tgt_word_prj.weight.set_value(w0)
        self.apply(self._init_weights)

    def _init_weights(self, m):
106

Topdu's avatar
Topdu committed
107
108
109
110
111
        if isinstance(m, nn.Conv2D):
            xavier_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

112
113
    def forward_train(self, src, tgt):
        tgt = tgt[:, :-1]
Topdu's avatar
Topdu committed
114

115
116
117
118
        tgt_key_padding_mask = self.generate_padding_mask(tgt)
        tgt = self.embedding(tgt).transpose([1, 0, 2])
        tgt = self.positional_encoding(tgt)
        tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
Topdu's avatar
Topdu committed
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        if self.encoder is not None:
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
        output = self.decoder(
            tgt,
            memory,
            tgt_mask=tgt_mask,
            memory_mask=None,
            tgt_key_padding_mask=tgt_key_padding_mask,
            memory_key_padding_mask=None)
        output = output.transpose([1, 0, 2])
        logit = self.tgt_word_prj(output)
        return logit

    def forward(self, src, targets=None):
        """Take in and process masked source/target sequences.
Topdu's avatar
Topdu committed
138
139
140
141
142
143
144
        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
        Shape:
            - src: :math:`(S, N, E)`.
            - tgt: :math:`(T, N, E)`.
        Examples:
145
            >>> output = transformer_model(src, tgt)
Topdu's avatar
Topdu committed
146
        """
147
148
149
150

        if self.training:
            max_len = targets[1].max()
            tgt = targets[0][:, :2 + max_len]
Topdu's avatar
Topdu committed
151
152
            return self.forward_train(src, tgt)
        else:
153
            if self.beam_size > 0:
Topdu's avatar
Topdu committed
154
155
156
157
158
159
                return self.forward_beam(src)
            else:
                return self.forward_test(src)

    def forward_test(self, src):
        bs = src.shape[0]
160
        if self.encoder is not None:
Topdu's avatar
Topdu committed
161
162
163
164
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
165
        dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
Topdu's avatar
Topdu committed
166
167
168
169
170
        for len_dec_seq in range(1, 25):
            src_enc = memory.clone()
            tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
            dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
            dec_seq_embed = self.positional_encoding(dec_seq_embed)
171
172
173
174
175
176
177
178
179
            tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[
                0])
            output = self.decoder(
                dec_seq_embed,
                src_enc,
                tgt_mask=tgt_mask,
                memory_mask=None,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=None)
Topdu's avatar
Topdu committed
180
            dec_output = output.transpose([1, 0, 2])
181
182
183

            dec_output = dec_output[:,
                                    -1, :]  # Pick the last step: (bh * bm) * d_h
Topdu's avatar
Topdu committed
184
185
186
            word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
            word_prob = word_prob.reshape([1, bs, -1])
            preds_idx = word_prob.argmax(axis=2)
187
188
189
190
191

            if paddle.equal_all(
                    preds_idx[-1],
                    paddle.full(
                        preds_idx[-1].shape, 3, dtype='int64')):
Topdu's avatar
Topdu committed
192
193
194
                break

            preds_prob = word_prob.max(axis=2)
195
196
            dec_seq = paddle.concat(
                [dec_seq, preds_idx.reshape([-1, 1])], axis=1)
Topdu's avatar
Topdu committed
197

198
        return dec_seq
Topdu's avatar
Topdu committed
199

200
    def forward_beam(self, images):
Topdu's avatar
Topdu committed
201
202
203
204
        ''' Translation work in one batch '''

        def get_inst_idx_to_tensor_position_map(inst_idx_list):
            ''' Indicate the position of an instance in a tensor. '''
205
206
207
208
            return {
                inst_idx: tensor_position
                for tensor_position, inst_idx in enumerate(inst_idx_list)
            }
Topdu's avatar
Topdu committed
209

210
211
        def collect_active_part(beamed_tensor, curr_active_inst_idx,
                                n_prev_active_inst, n_bm):
Topdu's avatar
Topdu committed
212
213
214
215
216
217
            ''' Collect tensor parts associated to active instances. '''

            _, *d_hs = beamed_tensor.shape
            n_curr_active_inst = len(curr_active_inst_idx)
            new_shape = (n_curr_active_inst * n_bm, *d_hs)

Topdu's avatar
Topdu committed
218
            beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])
219
220
            beamed_tensor = beamed_tensor.index_select(
                paddle.to_tensor(curr_active_inst_idx), axis=0)
Topdu's avatar
Topdu committed
221
222
223
224
            beamed_tensor = beamed_tensor.reshape([*new_shape])

            return beamed_tensor

225
226
        def collate_active_info(src_enc, inst_idx_to_position_map,
                                active_inst_idx_list):
Topdu's avatar
Topdu committed
227
228
            # Sentences which are still active are collected,
            # so the decoder will not run on completed sentences.
229

Topdu's avatar
Topdu committed
230
            n_prev_active_inst = len(inst_idx_to_position_map)
231
232
233
            active_inst_idx = [
                inst_idx_to_position_map[k] for k in active_inst_idx_list
            ]
Topdu's avatar
Topdu committed
234
            active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
235
236
237
238
239
            active_src_enc = collect_active_part(
                src_enc.transpose([1, 0, 2]), active_inst_idx,
                n_prev_active_inst, n_bm).transpose([1, 0, 2])
            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
                active_inst_idx_list)
Topdu's avatar
Topdu committed
240
241
            return active_src_enc, active_inst_idx_to_position_map

242
243
244
        def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,
                             inst_idx_to_position_map, n_bm,
                             memory_key_padding_mask):
Topdu's avatar
Topdu committed
245
246
247
            ''' Decode and update beam status, and then return active beam idx '''

            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
248
249
250
                dec_partial_seq = [
                    b.get_current_state() for b in inst_dec_beams if not b.done
                ]
Topdu's avatar
Topdu committed
251
                dec_partial_seq = paddle.stack(dec_partial_seq)
252

Topdu's avatar
Topdu committed
253
254
255
                dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
                return dec_partial_seq

256
257
            def prepare_beam_memory_key_padding_mask(
                    inst_dec_beams, memory_key_padding_mask, n_bm):
Topdu's avatar
Topdu committed
258
259
260
261
                keep = []
                for idx in (memory_key_padding_mask):
                    if not inst_dec_beams[idx].done:
                        keep.append(idx)
262
263
                memory_key_padding_mask = memory_key_padding_mask[
                    paddle.to_tensor(keep)]
Topdu's avatar
Topdu committed
264
265
                len_s = memory_key_padding_mask.shape[-1]
                n_inst = memory_key_padding_mask.shape[0]
266
267
268
269
                memory_key_padding_mask = paddle.concat(
                    [memory_key_padding_mask for i in range(n_bm)], axis=1)
                memory_key_padding_mask = memory_key_padding_mask.reshape(
                    [n_inst * n_bm, len_s])  #repeat(1, n_bm)
Topdu's avatar
Topdu committed
270
271
                return memory_key_padding_mask

272
273
            def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
                             memory_key_padding_mask):
Topdu's avatar
Topdu committed
274
275
276
                tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
                dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
                dec_seq = self.positional_encoding(dec_seq)
277
278
                tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[
                    0])
Topdu's avatar
Topdu committed
279
                dec_output = self.decoder(
280
281
                    dec_seq,
                    enc_output,
Topdu's avatar
Topdu committed
282
283
284
285
                    tgt_mask=tgt_mask,
                    tgt_key_padding_mask=tgt_key_padding_mask,
                    memory_key_padding_mask=memory_key_padding_mask,
                ).transpose([1, 0, 2])
286
287
                dec_output = dec_output[:,
                                        -1, :]  # Pick the last step: (bh * bm) * d_h
Topdu's avatar
Topdu committed
288
289
290
291
                word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
                word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
                return word_prob

292
293
            def collect_active_inst_idx_list(inst_beams, word_prob,
                                             inst_idx_to_position_map):
Topdu's avatar
Topdu committed
294
295
                active_inst_idx_list = []
                for inst_idx, inst_position in inst_idx_to_position_map.items():
296
297
                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[
                        inst_position])
Topdu's avatar
Topdu committed
298
299
300
301
302
303
304
305
                    if not is_inst_complete:
                        active_inst_idx_list += [inst_idx]

                return active_inst_idx_list

            n_active_inst = len(inst_idx_to_position_map)
            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
            memory_key_padding_mask = None
306
307
            word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
                                     memory_key_padding_mask)
Topdu's avatar
Topdu committed
308
309
310
311
312
313
314
315
316
317
            # Update the beam with predicted word prob information and collect incomplete instances
            active_inst_idx_list = collect_active_inst_idx_list(
                inst_dec_beams, word_prob, inst_idx_to_position_map)
            return active_inst_idx_list

        def collect_hypothesis_and_scores(inst_dec_beams, n_best):
            all_hyp, all_scores = [], []
            for inst_idx in range(len(inst_dec_beams)):
                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
                all_scores += [scores[:n_best]]
318
319
320
321
                hyps = [
                    inst_dec_beams[inst_idx].get_hypothesis(i)
                    for i in tail_idxs[:n_best]
                ]
Topdu's avatar
Topdu committed
322
323
324
325
326
                all_hyp += [hyps]
            return all_hyp, all_scores

        with paddle.no_grad():
            #-- Encode
327
328

            if self.encoder is not None:
Topdu's avatar
Topdu committed
329
330
331
332
333
334
335
336
                src = self.positional_encoding(images.transpose([1, 0, 2]))
                src_enc = self.encoder(src).transpose([1, 0, 2])
            else:
                src_enc = images.squeeze(2).transpose([0, 2, 1])

            #-- Repeat data for beam search
            n_bm = self.beam_size
            n_inst, len_s, d_h = src_enc.shape
337
338
            src_enc = paddle.concat([src_enc for i in range(n_bm)], axis=1)
            src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose(
topduke's avatar
topduke committed
339
                [1, 0, 2])
Topdu's avatar
Topdu committed
340
341
342
343
344
            #-- Prepare beams
            inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]

            #-- Bookkeeping for active or not
            active_inst_idx_list = list(range(n_inst))
345
346
            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
                active_inst_idx_list)
Topdu's avatar
Topdu committed
347
348
349
350
            #-- Decode
            for len_dec_seq in range(1, 25):
                src_enc_copy = src_enc.clone()
                active_inst_idx_list = beam_decode_step(
351
352
                    inst_dec_beams, len_dec_seq, src_enc_copy,
                    inst_idx_to_position_map, n_bm, None)
Topdu's avatar
Topdu committed
353
354
355
                if not active_inst_idx_list:
                    break  # all instances have finished their path to <EOS>
                src_enc, inst_idx_to_position_map = collate_active_info(
356
357
358
359
                    src_enc_copy, inst_idx_to_position_map,
                    active_inst_idx_list)
        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
                                                                1)
Topdu's avatar
Topdu committed
360
361
        result_hyp = []
        for bs_hyp in batch_hyp:
362
            bs_hyp_pad = bs_hyp[0] + [3] * (25 - len(bs_hyp[0]))
Topdu's avatar
Topdu committed
363
            result_hyp.append(bs_hyp_pad)
364
        return paddle.to_tensor(np.array(result_hyp), dtype=paddle.int64)
Topdu's avatar
Topdu committed
365
366

    def generate_square_subsequent_mask(self, sz):
367
        """Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Topdu's avatar
Topdu committed
368
369
            Unmasked positions are filled with float(0.0).
        """
370
371
372
373
374
375
        mask = paddle.zeros([sz, sz], dtype='float32')
        mask_inf = paddle.triu(
            paddle.full(
                shape=[sz, sz], dtype='float32', fill_value='-inf'),
            diagonal=1)
        mask = mask + mask_inf
Topdu's avatar
Topdu committed
376
377
378
        return mask

    def generate_padding_mask(self, x):
379
        padding_mask = x.equal(paddle.to_tensor(0, dtype=x.dtype))
Topdu's avatar
Topdu committed
380
381
382
        return padding_mask

    def _reset_parameters(self):
383
        """Initiate parameters in the transformer model."""
Topdu's avatar
Topdu committed
384
385
386
387
388
389
390

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)


class TransformerEncoder(nn.Layer):
391
    """TransformerEncoder is a stack of N encoder layers
Topdu's avatar
Topdu committed
392
393
394
395
396
397
398
399
400
401
402
403
    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).
    """

    def __init__(self, encoder_layer, num_layers):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers

    def forward(self, src):
404
        """Pass the input through the endocder layers in turn.
Topdu's avatar
Topdu committed
405
406
407
408
409
410
411
412
        Args:
            src: the sequnce to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
        """
        output = src

        for i in range(self.num_layers):
413
414
            output = self.layers[i](output,
                                    src_mask=None,
Topdu's avatar
Topdu committed
415
416
417
418
419
420
                                    src_key_padding_mask=None)

        return output


class TransformerDecoder(nn.Layer):
421
    """TransformerDecoder is a stack of N decoder layers
Topdu's avatar
Topdu committed
422
423
424
425
426
427
428
429
430
431
432
433
434

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    """

    def __init__(self, decoder_layer, num_layers):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers

435
436
437
438
439
440
    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                tgt_key_padding_mask=None,
Topdu's avatar
Topdu committed
441
                memory_key_padding_mask=None):
442
        """Pass the inputs (and mask) through the decoder layer in turn.
Topdu's avatar
Topdu committed
443
444
445
446
447
448
449
450
451
452
453

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).
        """
        output = tgt
        for i in range(self.num_layers):
454
455
456
457
458
459
460
            output = self.layers[i](
                output,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=memory_mask,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=memory_key_padding_mask)
Topdu's avatar
Topdu committed
461
462
463

        return output

464

Topdu's avatar
Topdu committed
465
class TransformerEncoderLayer(nn.Layer):
466
    """TransformerEncoderLayer is made up of self-attn and feedforward network.
Topdu's avatar
Topdu committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    """

481
482
483
484
485
486
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1):
Topdu's avatar
Topdu committed
487
        super(TransformerEncoderLayer, self).__init__()
Topdu's avatar
Topdu committed
488
        self.self_attn = MultiheadAttention(
489
490
491
492
493
494
495
496
497
498
            d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(
            in_channels=d_model,
            out_channels=dim_feedforward,
            kernel_size=(1, 1))
        self.conv2 = Conv2D(
            in_channels=dim_feedforward,
            out_channels=d_model,
            kernel_size=(1, 1))
Topdu's avatar
Topdu committed
499
500
501
502
503
504
505

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
506
        """Pass the input through the endocder layer.
Topdu's avatar
Topdu committed
507
508
509
510
511
        Args:
            src: the sequnce to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
        """
512
513
514
515
516
517
        src2 = self.self_attn(
            src,
            src,
            src,
            attn_mask=src_mask,
            key_padding_mask=src_key_padding_mask)[0]
Topdu's avatar
Topdu committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        src = src.transpose([1, 2, 0])
        src = paddle.unsqueeze(src, 2)
        src2 = self.conv2(F.relu(self.conv1(src)))
        src2 = paddle.squeeze(src2, 2)
        src2 = src2.transpose([2, 0, 1])
        src = paddle.squeeze(src, 2)
        src = src.transpose([2, 0, 1])

        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

533

Topdu's avatar
Topdu committed
534
class TransformerDecoderLayer(nn.Layer):
535
    """TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
Topdu's avatar
Topdu committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    """

550
551
552
553
554
555
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1):
Topdu's avatar
Topdu committed
556
        super(TransformerDecoderLayer, self).__init__()
Topdu's avatar
Topdu committed
557
        self.self_attn = MultiheadAttention(
558
            d_model, nhead, dropout=attention_dropout_rate)
Topdu's avatar
Topdu committed
559
        self.multihead_attn = MultiheadAttention(
560
561
562
563
564
565
566
567
568
569
            d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(
            in_channels=d_model,
            out_channels=dim_feedforward,
            kernel_size=(1, 1))
        self.conv2 = Conv2D(
            in_channels=dim_feedforward,
            out_channels=d_model,
            kernel_size=(1, 1))
Topdu's avatar
Topdu committed
570
571
572
573
574
575
576
577

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)
        self.dropout3 = Dropout(residual_dropout_rate)

578
579
580
581
582
583
584
585
    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        """Pass the inputs (and mask) through the decoder layer.
Topdu's avatar
Topdu committed
586
587
588
589
590
591
592
593
594
595

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        """
596
597
598
599
600
601
        tgt2 = self.self_attn(
            tgt,
            tgt,
            tgt,
            attn_mask=tgt_mask,
            key_padding_mask=tgt_key_padding_mask)[0]
Topdu's avatar
Topdu committed
602
603
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
604
605
606
607
608
609
        tgt2 = self.multihead_attn(
            tgt,
            memory,
            memory,
            attn_mask=memory_mask,
            key_padding_mask=memory_key_padding_mask)[0]
Topdu's avatar
Topdu committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # default
        tgt = tgt.transpose([1, 2, 0])
        tgt = paddle.unsqueeze(tgt, 2)
        tgt2 = self.conv2(F.relu(self.conv1(tgt)))
        tgt2 = paddle.squeeze(tgt2, 2)
        tgt2 = tgt2.transpose([2, 0, 1])
        tgt = paddle.squeeze(tgt, 2)
        tgt = tgt.transpose([2, 0, 1])

        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt


def _get_clones(module, N):
    return LayerList([copy.deepcopy(module) for i in range(N)])


class PositionalEncoding(nn.Layer):
632
    """Inject some information about the relative or absolute position of the tokens
Topdu's avatar
Topdu committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
654
655
656
        div_term = paddle.exp(
            paddle.arange(0, dim, 2).astype('float32') *
            (-math.log(10000.0) / dim))
Topdu's avatar
Topdu committed
657
658
659
660
661
662
663
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        pe = pe.transpose([1, 0, 2])
        self.register_buffer('pe', pe)

    def forward(self, x):
664
        """Inputs of forward function
Topdu's avatar
Topdu committed
665
666
667
668
669
670
671
672
673
674
675
676
677
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class PositionalEncoding_2d(nn.Layer):
678
    """Inject some information about the relative or absolute position of the tokens
Topdu's avatar
Topdu committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding_2d, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
700
701
702
        div_term = paddle.exp(
            paddle.arange(0, dim, 2).astype('float32') *
            (-math.log(10000.0) / dim))
Topdu's avatar
Topdu committed
703
704
705
706
707
708
709
710
711
712
713
714
715
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose([1, 0, 2])
        self.register_buffer('pe', pe)

        self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear1 = nn.Linear(dim, dim)
        self.linear1.weight.data.fill_(1.)
        self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear2 = nn.Linear(dim, dim)
        self.linear2.weight.data.fill_(1.)

    def forward(self, x):
716
        """Inputs of forward function
Topdu's avatar
Topdu committed
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        w_pe = self.pe[:x.shape[-1], :]
        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
        w_pe = w_pe * w1
        w_pe = w_pe.transpose([1, 2, 0])
        w_pe = w_pe.unsqueeze(2)

        h_pe = self.pe[:x.shape[-2], :]
        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
        h_pe = h_pe * w2
        h_pe = h_pe.transpose([1, 2, 0])
        h_pe = h_pe.unsqueeze(3)

        x = x + w_pe + h_pe
738
739
740
        x = x.reshape(
            [x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose(
                [2, 0, 1])
Topdu's avatar
Topdu committed
741
742
743
744
745
746
747
748

        return self.dropout(x)


class Embeddings(nn.Layer):
    def __init__(self, d_model, vocab, padding_idx, scale_embedding):
        super(Embeddings, self).__init__()
        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
749
750
751
        w0 = np.random.normal(0.0, d_model**-0.5,
                              (vocab, d_model)).astype(np.float32)
        self.embedding.weight.set_value(w0)
Topdu's avatar
Topdu committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        self.d_model = d_model
        self.scale_embedding = scale_embedding

    def forward(self, x):
        if self.scale_embedding:
            x = self.embedding(x)
            return x * math.sqrt(self.d_model)
        return self.embedding(x)


class Beam():
    ''' Beam search '''

    def __init__(self, size, device=False):

        self.size = size
        self._done = False
        # The score for each translation on the beam.
770
        self.scores = paddle.zeros((size, ), dtype=paddle.float32)
Topdu's avatar
Topdu committed
771
772
773
774
        self.all_scores = []
        # The backpointers at each time-step.
        self.prev_ks = []
        # The outputs at each time-step.
775
        self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]
Topdu's avatar
Topdu committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        self.next_ys[0][0] = 2

    def get_current_state(self):
        "Get the outputs for the current timestep."
        return self.get_tentative_hypothesis()

    def get_current_origin(self):
        "Get the backpointers for the current timestep."
        return self.prev_ks[-1]

    @property
    def done(self):
        return self._done

    def advance(self, word_prob):
        "Update beam status and check if finished or not."
        num_words = word_prob.shape[1]

        # Sum the previous scores.
        if len(self.prev_ks) > 0:
            beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
        else:
            beam_lk = word_prob[0]

        flat_beam_lk = beam_lk.reshape([-1])
801
802
        best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,
                                                        True)  # 1st sort
Topdu's avatar
Topdu committed
803
804
805
806
807
808
        self.all_scores.append(self.scores)
        self.scores = best_scores
        # bestScoresId is flattened as a (beam x word) array,
        # so we need to calculate which word and beam each score came from
        prev_k = best_scores_id // num_words
        self.prev_ks.append(prev_k)
809
        self.next_ys.append(best_scores_id - prev_k * num_words)
Topdu's avatar
Topdu committed
810
        # End condition is when top-of-beam is EOS.
811
        if self.next_ys[-1][0] == 3:
Topdu's avatar
Topdu committed
812
813
814
815
816
817
818
            self._done = True
            self.all_scores.append(self.scores)

        return self._done

    def sort_scores(self):
        "Sort the scores."
819
820
        return self.scores, paddle.to_tensor(
            [i for i in range(self.scores.shape[0])], dtype='int32')
Topdu's avatar
Topdu committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

    def get_the_best_score_and_idx(self):
        "Get the score of the best in the beam."
        scores, ids = self.sort_scores()
        return scores[1], ids[1]

    def get_tentative_hypothesis(self):
        "Get the decoded sequence for the current timestep."
        if len(self.next_ys) == 1:
            dec_seq = self.next_ys[0].unsqueeze(1)
        else:
            _, keys = self.sort_scores()
            hyps = [self.get_hypothesis(k) for k in keys]
            hyps = [[2] + h for h in hyps]
            dec_seq = paddle.to_tensor(hyps, dtype='int64')
        return dec_seq

    def get_hypothesis(self, k):
        """ Walk back to construct the full hypothesis. """
        hyp = []
        for j in range(len(self.prev_ks) - 1, -1, -1):
842
            hyp.append(self.next_ys[j + 1][k])
Topdu's avatar
Topdu committed
843
844
            k = self.prev_ks[j][k]
        return list(map(lambda x: x.item(), hyp[::-1]))