"examples/consistency_distillation/requirements.txt" did not exist on "e70cb1243f8a90c2d78d29db1a6a64cf9ba6c5cc"
label_ops.py 19.6 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
tink2123's avatar
tink2123 committed
21
import string
LDOUBLEV's avatar
LDOUBLEV committed
22
import json
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
29
30
31
32
33
34
35


class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
WenmuZhou's avatar
WenmuZhou committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
LDOUBLEV's avatar
LDOUBLEV committed
56
57
        if len(boxes) == 0:
            return None
MissPenguin's avatar
MissPenguin committed
58
        boxes = self.expand_points_num(boxes)
WenmuZhou's avatar
WenmuZhou committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

MissPenguin's avatar
MissPenguin committed
77
78
79
80
81
82
83
84
85
86
87
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
92
93
94
95
96

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
MissPenguin's avatar
MissPenguin committed
97
        support_character_type = [
tink2123's avatar
tink2123 committed
98
99
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
            'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
tink2123's avatar
tink2123 committed
100
            'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
Topdu's avatar
Topdu committed
101
            'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
MissPenguin's avatar
MissPenguin committed
102
        ]
WenmuZhou's avatar
WenmuZhou committed
103
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
MissPenguin's avatar
MissPenguin committed
104
            support_character_type, character_type)
WenmuZhou's avatar
WenmuZhou committed
105
106

        self.max_text_len = max_text_length
tink2123's avatar
tink2123 committed
107
108
        self.beg_str = "sos"
        self.end_str = "eos"
WenmuZhou's avatar
WenmuZhou committed
109
110
111
        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
112
        elif character_type == "EN_symbol":
tink2123's avatar
tink2123 committed
113
114
115
116
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
WenmuZhou's avatar
WenmuZhou committed
117
            self.character_str = ""
tink2123's avatar
tink2123 committed
118
119
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
WenmuZhou's avatar
WenmuZhou committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str += line
            if use_space_char:
                self.character_str += " "
            dict_character = list(self.character_str)
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
WenmuZhou's avatar
WenmuZhou committed
148
        if len(text) == 0 or len(text) > self.max_text_len:
WenmuZhou's avatar
WenmuZhou committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            return None
        if self.character_type == "en":
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


Topdu's avatar
Topdu committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 character_type='EN_symbol',
                 use_space_char=False,
                 **kwargs):

        super(NRTRLabelEncode,
              self).__init__(max_text_length, character_dict_path,
                             character_type, use_space_char)
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
    def add_special_char(self, dict_character):
        dict_character = ['blank','<unk>','<s>','</s>'] + dict_character
        return dict_character

WenmuZhou's avatar
WenmuZhou committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(CTCLabelEncode,
              self).__init__(max_text_length, character_dict_path,
                             character_type, use_space_char)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


Jethong's avatar
Jethong committed
220
class E2ELabelEncodeTest(BaseRecLabelEncode):
Jethong's avatar
Jethong committed
221
222
223
224
225
226
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 character_type='EN',
                 use_space_char=False,
                 **kwargs):
Jethong's avatar
Jethong committed
227
        super(E2ELabelEncodeTest,
Jethong's avatar
Jethong committed
228
229
230
231
              self).__init__(max_text_length, character_dict_path,
                             character_type, use_space_char)

    def __call__(self, data):
Jethong's avatar
Jethong committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
Jethong's avatar
Jethong committed
250
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
251
        temp_texts = []
Jethong's avatar
Jethong committed
252
        for text in txts:
Jethong's avatar
Jethong committed
253
254
255
256
            text = text.lower()
            text = self.encode(text)
            if text is None:
                return None
Jethong's avatar
Jethong committed
257
258
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
Jethong's avatar
Jethong committed
259
260
261
262
263
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


Jethong's avatar
Jethong committed
264
class E2ELabelEncodeTrain(object):
Jethong's avatar
Jethong committed
265
266
    def __init__(self, **kwargs):
        pass
Jethong's avatar
Jethong committed
267
268

    def __call__(self, data):
Jethong's avatar
Jethong committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
Jethong's avatar
Jethong committed
288
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
289
290
291
        return data


WenmuZhou's avatar
WenmuZhou committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(AttnLabelEncode,
              self).__init__(max_text_length, character_dict_path,
                             character_type, use_space_char)

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
306
307
308
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
309
310
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
311
312
    def __call__(self, data):
        text = data['label']
WenmuZhou's avatar
WenmuZhou committed
313
        text = self.encode(text)
LDOUBLEV's avatar
LDOUBLEV committed
314
315
        if text is None:
            return None
LDOUBLEV's avatar
LDOUBLEV committed
316
        if len(text) >= self.max_text_len:
LDOUBLEV's avatar
LDOUBLEV committed
317
318
319
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
tink2123's avatar
tink2123 committed
320
                                                               - len(text) - 2)
LDOUBLEV's avatar
LDOUBLEV committed
321
322
323
324
325
326
327
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
WenmuZhou's avatar
WenmuZhou committed
328
329
330
331
332
333
334
335
336
337

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
tink2123's avatar
tink2123 committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359


class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 character_type='en',
                 use_space_char=False,
                 **kwargs):
        super(SRNLabelEncode,
              self).__init__(max_text_length, character_dict_path,
                             character_type, use_space_char)

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
tink2123's avatar
tink2123 committed
360
        char_num = len(self.character)
tink2123's avatar
tink2123 committed
361
362
363
364
365
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
tink2123's avatar
tink2123 committed
366
        text = text + [char_num - 1] * (self.max_text_len - len(text))
tink2123's avatar
tink2123 committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
MissPenguin's avatar
MissPenguin committed
384

LDOUBLEV's avatar
LDOUBLEV committed
385

MissPenguin's avatar
MissPenguin committed
386
387
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
LDOUBLEV's avatar
LDOUBLEV committed
388
389
390
391
392
393
394
395

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
MissPenguin's avatar
MissPenguin committed
396
397
398
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
LDOUBLEV's avatar
LDOUBLEV committed
399
400
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
MissPenguin's avatar
MissPenguin committed
401
402
403
404
405
406
407
408
409
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
LDOUBLEV's avatar
LDOUBLEV committed
410

MissPenguin's avatar
MissPenguin committed
411
412
413
414
415
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
WenmuZhou's avatar
WenmuZhou committed
416
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
MissPenguin's avatar
MissPenguin committed
417
418
            character_num = int(substr[0])
            elem_num = int(substr[1])
419

LDOUBLEV's avatar
LDOUBLEV committed
420
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
421
                character = lines[cno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
422
                list_character.append(character)
LDOUBLEV's avatar
LDOUBLEV committed
423
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
424
                elem = lines[eno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
425
426
                list_elem.append(elem)
        return list_character, list_elem
LDOUBLEV's avatar
LDOUBLEV committed
427

MissPenguin's avatar
MissPenguin committed
428
429
430
431
432
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
LDOUBLEV's avatar
LDOUBLEV committed
433

MissPenguin's avatar
MissPenguin committed
434
435
436
437
438
439
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
LDOUBLEV's avatar
LDOUBLEV committed
440

MissPenguin's avatar
MissPenguin committed
441
442
443
444
445
446
447
448
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
LDOUBLEV's avatar
LDOUBLEV committed
449
450
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
MissPenguin's avatar
MissPenguin committed
451
452
453
454
455
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
LDOUBLEV's avatar
LDOUBLEV committed
456
457
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
MissPenguin's avatar
MissPenguin committed
458
        td_idx_list = np.where(td_idx_list)[0]
LDOUBLEV's avatar
LDOUBLEV committed
459
460
461

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
462
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
463
464
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
LDOUBLEV's avatar
LDOUBLEV committed
491
492
493
494
495
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
MissPenguin's avatar
MissPenguin committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
LDOUBLEV's avatar
LDOUBLEV committed
547
                              % beg_or_end
MissPenguin's avatar
MissPenguin committed
548
549
        else:
            assert False, "Unsupport type %s in char_or_elem" \
LDOUBLEV's avatar
LDOUBLEV committed
550
                              % char_or_elem
MissPenguin's avatar
MissPenguin committed
551
        return idx