sensitivity_anal.py 4.99 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program

dist.get_world_size()


def get_pruned_params(parameters):
    params = []

    for param in parameters:
        if len(
                param.shape
        ) == 4 and 'depthwise' not in param.name and 'transpose' not in param.name and "conv2d_57" not in param.name and "conv2d_56" not in param.name:
            params.append(param.name)
    return params


def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()

    global_config = config['Global']

    # build dataloader
    train_dataloader = build_dataloader(config, 'Train', device, logger)
    if config['Eval']:
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
    else:
        valid_dataloader = None

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num
    model = build_model(config['Architecture'])

    flops = paddle.flops(model, [1, 3, 640, 640])
LDOUBLEV's avatar
LDOUBLEV committed
78
    logger.info("FLOPs before pruning: {}".format(flops))
LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    from paddleslim.dygraph import FPGMFilterPruner
    model.train()
    pruner = FPGMFilterPruner(model, [1, 3, 640, 640])

    # build loss
    loss_class = build_loss(config['Loss'])

    # build optim
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
        epochs=config['Global']['epoch_num'],
        step_each_epoch=len(train_dataloader),
        parameters=model.parameters())

    # build metric
    eval_class = build_metric(config['Metric'])
    # load pretrain model
    pre_best_model_dict = init_model(config, model, logger, optimizer)

    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))
    # build metric
    eval_class = build_metric(config['Metric'])

    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))

    def eval_fn():
        metric = program.eval(model, valid_dataloader, post_process_class,
LDOUBLEV's avatar
LDOUBLEV committed
109
110
                              eval_class, False)
        logger.info("metric['hmean']: {}".format(metric['hmean']))
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        return metric['hmean']

    params_sensitive = pruner.sensitive(
        eval_func=eval_fn,
        sen_file="./sen.pickle",
        skip_vars=[
            "conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
        ])

    logger.info(
        "The sensitivity analysis results of model parameters saved in sen.pickle"
    )
    # calculate pruned params's ratio
    params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
    for key in params_sensitive.keys():
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
131
        logger.info("{}, {}".format(key, params_sensitive[key]))

    #params_sensitive = {}
    #for param in model.parameters():
    #    if 'transpose' not in param.name and 'linear' not in param.name:
    #        params_sensitive[param.name] = 0.1  
LDOUBLEV's avatar
LDOUBLEV committed
132
133
134
135

    plan = pruner.prune_vars(params_sensitive, [0])

    flops = paddle.flops(model, [1, 3, 640, 640])
LDOUBLEV's avatar
LDOUBLEV committed
136
    logger.info("FLOPs after pruning: {}".format(flops))
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
141
142
143
144
145
146
147

    # start train

    program.train(config, train_dataloader, valid_dataloader, device, model,
                  loss_class, optimizer, lr_scheduler, post_process_class,
                  eval_class, pre_best_model_dict, logger, vdl_writer)


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
    main(config, device, logger, vdl_writer)