rec_resnet_31.py 6.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from: 
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
"""

andyjpaddle's avatar
andyjpaddle committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np

__all__ = ["ResNet31"]


def conv3x3(in_channel, out_channel, stride=1):
    return nn.Conv2D(
        in_channel,
        out_channel,
        kernel_size=3,
        stride=stride,
        padding=1,
40
        bias_attr=False)
andyjpaddle's avatar
andyjpaddle committed
41
42
43
44


class BasicBlock(nn.Layer):
    expansion = 1
45

andyjpaddle's avatar
andyjpaddle committed
46
47
48
49
50
51
52
53
54
55
    def __init__(self, in_channels, channels, stride=1, downsample=False):
        super().__init__()
        self.conv1 = conv3x3(in_channels, channels, stride)
        self.bn1 = nn.BatchNorm2D(channels)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(channels, channels)
        self.bn2 = nn.BatchNorm2D(channels)
        self.downsample = downsample
        if downsample:
            self.downsample = nn.Sequential(
56
57
58
59
60
61
62
                nn.Conv2D(
                    in_channels,
                    channels * self.expansion,
                    1,
                    stride,
                    bias_attr=False),
                nn.BatchNorm2D(channels * self.expansion), )
andyjpaddle's avatar
andyjpaddle committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        else:
            self.downsample = nn.Sequential()
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

83
        return out
andyjpaddle's avatar
andyjpaddle committed
84
85
86
87
88
89
90
91
92
93
94


class ResNet31(nn.Layer):
    '''
    Args:
        in_channels (int): Number of channels of input image tensor.
        layers (list[int]): List of BasicBlock number for each stage.
        channels (list[int]): List of out_channels of Conv2d layer.
        out_indices (None | Sequence[int]): Indices of output stages.
        last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
    '''
95
96
97
98
99
100
101

    def __init__(self,
                 in_channels=3,
                 layers=[1, 2, 5, 3],
                 channels=[64, 128, 256, 256, 512, 512, 512],
                 out_indices=None,
                 last_stage_pool=False):
andyjpaddle's avatar
andyjpaddle committed
102
103
104
105
106
107
108
109
        super(ResNet31, self).__init__()
        assert isinstance(in_channels, int)
        assert isinstance(last_stage_pool, bool)

        self.out_indices = out_indices
        self.last_stage_pool = last_stage_pool

        # conv 1 (Conv Conv)
110
111
        self.conv1_1 = nn.Conv2D(
            in_channels, channels[0], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
112
113
114
        self.bn1_1 = nn.BatchNorm2D(channels[0])
        self.relu1_1 = nn.ReLU()

115
116
        self.conv1_2 = nn.Conv2D(
            channels[0], channels[1], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
117
118
119
120
        self.bn1_2 = nn.BatchNorm2D(channels[1])
        self.relu1_2 = nn.ReLU()

        # conv 2 (Max-pooling, Residual block, Conv)
121
122
        self.pool2 = nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
andyjpaddle's avatar
andyjpaddle committed
123
        self.block2 = self._make_layer(channels[1], channels[2], layers[0])
124
125
        self.conv2 = nn.Conv2D(
            channels[2], channels[2], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
126
127
128
129
        self.bn2 = nn.BatchNorm2D(channels[2])
        self.relu2 = nn.ReLU()

        # conv 3 (Max-pooling, Residual block, Conv)
130
131
        self.pool3 = nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
andyjpaddle's avatar
andyjpaddle committed
132
        self.block3 = self._make_layer(channels[2], channels[3], layers[1])
133
134
        self.conv3 = nn.Conv2D(
            channels[3], channels[3], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
135
136
137
138
        self.bn3 = nn.BatchNorm2D(channels[3])
        self.relu3 = nn.ReLU()

        # conv 4 (Max-pooling, Residual block, Conv)
139
140
        self.pool4 = nn.MaxPool2D(
            kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
andyjpaddle's avatar
andyjpaddle committed
141
        self.block4 = self._make_layer(channels[3], channels[4], layers[2])
142
143
        self.conv4 = nn.Conv2D(
            channels[4], channels[4], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
144
145
146
147
148
149
        self.bn4 = nn.BatchNorm2D(channels[4])
        self.relu4 = nn.ReLU()

        # conv 5 ((Max-pooling), Residual block, Conv)
        self.pool5 = None
        if self.last_stage_pool:
150
151
            self.pool5 = nn.MaxPool2D(
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
andyjpaddle's avatar
andyjpaddle committed
152
        self.block5 = self._make_layer(channels[4], channels[5], layers[3])
153
154
        self.conv5 = nn.Conv2D(
            channels[5], channels[5], kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
155
156
157
158
        self.bn5 = nn.BatchNorm2D(channels[5])
        self.relu5 = nn.ReLU()

        self.out_channels = channels[-1]
159

andyjpaddle's avatar
andyjpaddle committed
160
161
162
163
164
165
166
    def _make_layer(self, input_channels, output_channels, blocks):
        layers = []
        for _ in range(blocks):
            downsample = None
            if input_channels != output_channels:
                downsample = nn.Sequential(
                    nn.Conv2D(
167
168
169
170
                        input_channels,
                        output_channels,
                        kernel_size=1,
                        stride=1,
andyjpaddle's avatar
andyjpaddle committed
171
                        bias_attr=False),
172
173
174
175
176
                    nn.BatchNorm2D(output_channels), )

            layers.append(
                BasicBlock(
                    input_channels, output_channels, downsample=downsample))
andyjpaddle's avatar
andyjpaddle committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
            input_channels = output_channels
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1_1(x)
        x = self.bn1_1(x)
        x = self.relu1_1(x)

        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)

        outs = []
        for i in range(4):
            layer_index = i + 2
            pool_layer = getattr(self, f'pool{layer_index}')
            block_layer = getattr(self, f'block{layer_index}')
            conv_layer = getattr(self, f'conv{layer_index}')
            bn_layer = getattr(self, f'bn{layer_index}')
            relu_layer = getattr(self, f'relu{layer_index}')

            if pool_layer is not None:
                x = pool_layer(x)
            x = block_layer(x)
            x = conv_layer(x)
            x = bn_layer(x)
203
            x = relu_layer(x)
andyjpaddle's avatar
andyjpaddle committed
204
205

            outs.append(x)
206

andyjpaddle's avatar
andyjpaddle committed
207
208
        if self.out_indices is not None:
            return tuple([outs[i] for i in self.out_indices])
209

andyjpaddle's avatar
andyjpaddle committed
210
        return x