paddleocr.py 13.9 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))

import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm

from tools.infer import predict_system
WenmuZhou's avatar
WenmuZhou committed
29
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
30

WenmuZhou's avatar
WenmuZhou committed
31
logger = get_logger()
32
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
WenmuZhou's avatar
WenmuZhou committed
33
34
35

__all__ = ['PaddleOCR']

WenmuZhou's avatar
WenmuZhou committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
model_urls = {
    'det':
        'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
    'rec': {
        'ch': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
        },
        'en': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/ic15_dict.txt'
        },
        'french': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/dict/french_dict.txt'
        },
        'german': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/dict/german_dict.txt'
        },
        'korean': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/dict/korean_dict.txt'
        },
        'japan': {
            'url':
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar',
            'dict_path': './ppocr/utils/dict/japan_dict.txt'
        }
    },
    'cls':
        'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
WenmuZhou's avatar
WenmuZhou committed
73
74
75
}

SUPPORT_DET_MODEL = ['DB']
76
77
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
WenmuZhou's avatar
WenmuZhou committed
78
79
80
81
82
83
84
85
86
87
88
89


def download_with_progressbar(url, save_path):
    response = requests.get(url, stream=True)
    total_size_in_bytes = int(response.headers.get('content-length', 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
    with open(save_path, 'wb') as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
WenmuZhou's avatar
WenmuZhou committed
90
91
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
        logger.error("Something went wrong while downloading models")
WenmuZhou's avatar
WenmuZhou committed
92
93
94
        sys.exit(0)


95
def maybe_download(model_storage_directory, url):
WenmuZhou's avatar
WenmuZhou committed
96
    # using custom model
97
98
    if not os.path.exists(os.path.join(
            model_storage_directory, 'model')) or not os.path.exists(
WenmuZhou's avatar
WenmuZhou committed
99
        os.path.join(model_storage_directory, 'params')):
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
        print('download {} to {}'.format(url, tmp_path))
        os.makedirs(model_storage_directory, exist_ok=True)
        download_with_progressbar(url, tmp_path)
        with tarfile.open(tmp_path, 'r') as tarObj:
            for member in tarObj.getmembers():
                if "model" in member.name:
                    filename = 'model'
                elif "params" in member.name:
                    filename = 'params'
                else:
                    continue
                file = tarObj.extractfile(member)
                with open(
                        os.path.join(model_storage_directory, filename),
                        'wb') as f:
                    f.write(file.read())
        os.remove(tmp_path)
WenmuZhou's avatar
WenmuZhou committed
118
119


WenmuZhou's avatar
WenmuZhou committed
120
def parse_args(mMain=True, add_help=True):
WenmuZhou's avatar
WenmuZhou committed
121
122
123
124
125
    import argparse

    def str2bool(v):
        return v.lower() in ("true", "t", "1")

WenmuZhou's avatar
WenmuZhou committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    if mMain:
        parser = argparse.ArgumentParser(add_help=add_help)
        # params for prediction engine
        parser.add_argument("--use_gpu", type=str2bool, default=True)
        parser.add_argument("--ir_optim", type=str2bool, default=True)
        parser.add_argument("--use_tensorrt", type=str2bool, default=False)
        parser.add_argument("--gpu_mem", type=int, default=8000)

        # params for text detector
        parser.add_argument("--image_dir", type=str)
        parser.add_argument("--det_algorithm", type=str, default='DB')
        parser.add_argument("--det_model_dir", type=str, default=None)
        parser.add_argument("--det_limit_side_len", type=float, default=960)
        parser.add_argument("--det_limit_type", type=str, default='max')

        # DB parmas
        parser.add_argument("--det_db_thresh", type=float, default=0.3)
        parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
        parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)

        # EAST parmas
        parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
        parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
        parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

        # params for text recognizer
        parser.add_argument("--rec_algorithm", type=str, default='CRNN')
        parser.add_argument("--rec_model_dir", type=str, default=None)
        parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
        parser.add_argument("--rec_char_type", type=str, default='ch')
        parser.add_argument("--rec_batch_num", type=int, default=30)
        parser.add_argument("--max_text_length", type=int, default=25)
        parser.add_argument("--rec_char_dict_path", type=str, default=None)
        parser.add_argument("--use_space_char", type=bool, default=True)
        parser.add_argument("--drop_score", type=float, default=0.5)

        # params for text classifier
        parser.add_argument("--cls_model_dir", type=str, default=None)
        parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
        parser.add_argument("--label_list", type=list, default=['0', '180'])
        parser.add_argument("--cls_batch_num", type=int, default=30)
        parser.add_argument("--cls_thresh", type=float, default=0.9)

        parser.add_argument("--enable_mkldnn", type=bool, default=False)
        parser.add_argument("--use_zero_copy_run", type=bool, default=False)
        parser.add_argument("--use_pdserving", type=str2bool, default=False)

        parser.add_argument("--lang", type=str, default='ch')
        parser.add_argument("--det", type=str2bool, default=True)
        parser.add_argument("--rec", type=str2bool, default=True)
        parser.add_argument("--use_angle_cls", type=str2bool, default=False)
        return parser.parse_args()
    else:
        return argparse.Namespace(use_gpu=True,
                                  ir_optim=True,
                                  use_tensorrt=False,
                                  gpu_mem=8000,
                                  image_dir='',
                                  det_algorithm='DB',
                                  det_model_dir=None,
                                  det_limit_side_len=960,
                                  det_limit_type='max',
                                  det_db_thresh=0.3,
                                  det_db_box_thresh=0.5,
                                  det_db_unclip_ratio=2.0,
                                  det_east_score_thresh=0.8,
                                  det_east_cover_thresh=0.1,
                                  det_east_nms_thresh=0.2,
                                  rec_algorithm='CRNN',
                                  rec_model_dir=None,
                                  rec_image_shape="3, 32, 320",
                                  rec_char_type='ch',
                                  rec_batch_num=30,
                                  max_text_length=25,
                                  rec_char_dict_path=None,
                                  use_space_char=True,
                                  drop_score=0.5,
                                  cls_model_dir=None,
                                  cls_image_shape="3, 48, 192",
                                  label_list=['0', '180'],
                                  cls_batch_num=30,
                                  cls_thresh=0.9,
                                  enable_mkldnn=False,
                                  use_zero_copy_run=False,
                                  use_pdserving=False,
                                  lang='ch',
                                  det=True,
                                  rec=True,
                                  use_angle_cls=False
                                  )
WenmuZhou's avatar
WenmuZhou committed
216
217
218


class PaddleOCR(predict_system.TextSystem):
219
    def __init__(self, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
        """
        paddleocr package
        args:
            **kwargs: other params show in paddleocr --help
        """
WenmuZhou's avatar
WenmuZhou committed
225
        postprocess_params = parse_args(mMain=False, add_help=False)
226
        postprocess_params.__dict__.update(**kwargs)
WenmuZhou's avatar
WenmuZhou committed
227
228
229
230
231
232
233
234
        self.use_angle_cls = postprocess_params.use_angle_cls
        lang = postprocess_params.lang
        assert lang in model_urls[
            'rec'], 'param lang must in {}, but got {}'.format(
            model_urls['rec'].keys(), lang)
        if postprocess_params.rec_char_dict_path is None:
            postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
                'dict_path']
WenmuZhou's avatar
WenmuZhou committed
235

236
237
238
239
        # init model dir
        if postprocess_params.det_model_dir is None:
            postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
        if postprocess_params.rec_model_dir is None:
WenmuZhou's avatar
WenmuZhou committed
240
241
242
243
            postprocess_params.rec_model_dir = os.path.join(
                BASE_DIR, 'rec/{}'.format(lang))
        if postprocess_params.cls_model_dir is None:
            postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
244
        print(postprocess_params)
WenmuZhou's avatar
WenmuZhou committed
245
        # download model
WenmuZhou's avatar
WenmuZhou committed
246
247
248
249
        maybe_download(postprocess_params.det_model_dir, model_urls['det'])
        maybe_download(postprocess_params.rec_model_dir,
                       model_urls['rec'][lang]['url'])
        maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
WenmuZhou's avatar
WenmuZhou committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263

        if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
            logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
            sys.exit(0)
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
            sys.exit(0)

        postprocess_params.rec_char_dict_path = Path(
            __file__).parent / postprocess_params.rec_char_dict_path

        # init det_model and rec_model
        super().__init__(postprocess_params)

WenmuZhou's avatar
WenmuZhou committed
264
    def ocr(self, img, det=True, rec=True, cls=False):
WenmuZhou's avatar
WenmuZhou committed
265
266
267
268
269
270
271
272
        """
        ocr with paddleocr
        args:
            img: img for ocr, support ndarray, img_path and list or ndarray
            det: use text detection or not, if false, only rec will be exec. default is True
            rec: use text recognition or not, if false, only det will be exec. default is True
        """
        assert isinstance(img, (np.ndarray, list, str))
WenmuZhou's avatar
WenmuZhou committed
273
274
275
276
277
        if isinstance(img, list) and det == True:
            logger.error('When input a list of images, det must be false')
            exit(0)

        self.use_angle_cls = cls
WenmuZhou's avatar
WenmuZhou committed
278
        if isinstance(img, str):
WenmuZhou's avatar
WenmuZhou committed
279
280
281
282
            # download net image
            if img.startswith('http'):
                download_with_progressbar(img, 'tmp.jpg')
                img = 'tmp.jpg'
WenmuZhou's avatar
WenmuZhou committed
283
284
285
286
287
288
289
            image_file = img
            img, flag = check_and_read_gif(image_file)
            if not flag:
                img = cv2.imread(image_file)
            if img is None:
                logger.error("error in loading image:{}".format(image_file))
                return None
WenmuZhou's avatar
WenmuZhou committed
290
291
        if isinstance(img, np.ndarray) and len(img.shape) == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
WenmuZhou's avatar
WenmuZhou committed
292
293
294
295
296
297
298
299
300
301
302
        if det and rec:
            dt_boxes, rec_res = self.__call__(img)
            return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
        elif det and not rec:
            dt_boxes, elapse = self.text_detector(img)
            if dt_boxes is None:
                return None
            return [box.tolist() for box in dt_boxes]
        else:
            if not isinstance(img, list):
                img = [img]
WenmuZhou's avatar
WenmuZhou committed
303
304
305
306
            if self.use_angle_cls:
                img, cls_res, elapse = self.text_classifier(img)
                if not rec:
                    return cls_res
WenmuZhou's avatar
WenmuZhou committed
307
308
            rec_res, elapse = self.text_recognizer(img)
            return rec_res
309
310
311


def main():
WenmuZhou's avatar
WenmuZhou committed
312
313
314
315
316
317
318
319
    # for cmd
    args = parse_args(mMain=True)
    image_dir = args.image_dir
    if image_dir.startswith('http'):
        download_with_progressbar(image_dir, 'tmp.jpg')
        image_file_list = ['tmp.jpg']
    else:
        image_file_list = get_image_file_list(args.image_dir)
320
321
322
    if len(image_file_list) == 0:
        logger.error('no images find in {}'.format(args.image_dir))
        return
WenmuZhou's avatar
WenmuZhou committed
323
324

    ocr_engine = PaddleOCR(**(args.__dict__))
325
    for img_path in image_file_list:
WenmuZhou's avatar
WenmuZhou committed
326
327
328
329
330
331
332
333
        logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
        result = ocr_engine.ocr(img_path,
                                det=args.det,
                                rec=args.rec,
                                cls=args.use_angle_cls)
        if result is not None:
            for line in result:
                logger.info(line)