module.py 4.01 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import copy
import math
import os
import time

from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub

from tools.infer.utility import base64_to_cv2
from tools.infer.predict_rec import TextRecognizer


@moduleinfo(
    name="ocr_rec",
    version="1.0.0",
    summary="ocr recognition service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRRec(hub.Module):
dyning's avatar
dyning committed
34
    def _initialize(self, use_gpu=False):
dyning's avatar
dyning committed
35
36
37
        """
        initialize with the necessary elements
        """
dyning's avatar
dyning committed
38
39
40
41
        from ocr_rec.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
42
43
44
45
46
47
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
48
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
49
50
51
52
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
53
        cfg.ir_optim = True
dyning's avatar
dyning committed
54

dyning's avatar
dyning committed
55
        self.text_recognizer = TextRecognizer(cfg)
dyning's avatar
dyning committed
56
57
58
59
60
61
62
63
64
65
66
67
68

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

dyning's avatar
dyning committed
69
    def predict(self,
dyning's avatar
dyning committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
                images=[],
                paths=[]):
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
        
        img_list = []
        for img in predicted_data:
            if img is None:
                continue
            img_list.append(img)
dyning's avatar
dyning committed
95
96
            
        rec_res_final = []
dyning's avatar
dyning committed
97
        try:
dyning's avatar
dyning committed
98
            rec_res, predict_time = self.text_recognizer(img_list)
dyning's avatar
dyning committed
99
100
101
102
103
104
105
106
            for dno in range(len(rec_res)):
                text, score = rec_res[dno]
                rec_res_final.append(
                    {
                        'text': text,
                        'confidence': float(score),
                    }
                )
dyning's avatar
dyning committed
107
108
        except Exception as e:
            print(e)
dyning's avatar
dyning committed
109
110
111
112
            return [[]]

        return [rec_res_final]

dyning's avatar
dyning committed
113
114
115
116
117
118
119

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
120
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
121
122
123
124
125
126
127
128
129
130
        return results

   
if __name__ == '__main__':
    ocr = OCRRec()
    image_path = [
        './doc/imgs_words/ch/word_1.jpg',
        './doc/imgs_words/ch/word_2.jpg',
        './doc/imgs_words/ch/word_3.jpg',
    ]
dyning's avatar
dyning committed
131
    res = ocr.predict(paths=image_path)
dyning's avatar
dyning committed
132
    print(res)