recognition_en.md 13.5 KB
Newer Older
xxxpsyduck's avatar
xxxpsyduck committed
1
## TEXT RECOGNITION
Khanh Tran's avatar
Khanh Tran committed
2

WenmuZhou's avatar
WenmuZhou committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
- [DATA PREPARATION](#DATA_PREPARATION)
    - [Dataset Download](#Dataset_download)
    - [Costom Dataset](#Costom_Dataset)  
    - [Dictionary](#Dictionary)  
    - [Add Space Category](#Add_space_category)

- [TRAINING](#TRAINING)
    - [Data Augmentation](#Data_Augmentation)
    - [Training](#Training)
    - [Multi-language](#Multi_language)

- [EVALUATION](#EVALUATION)

- [PREDICTION](#PREDICTION)
    - [Training engine prediction](#Training_engine_prediction)

<a name="DATA_PREPARATION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
20
### DATA PREPARATION
Khanh Tran's avatar
Khanh Tran committed
21
22
23
24
25
26
27
28
29


PaddleOCR supports two data formats: `LMDB` is used to train public data and evaluation algorithms; `general data` is used to train your own data:

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
30
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
Khanh Tran's avatar
Khanh Tran committed
31
32
```

WenmuZhou's avatar
WenmuZhou committed
33
<a name="Dataset_download"></a>
Khanh Tran's avatar
Khanh Tran committed
34
35
36
37
* Dataset download

If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),download the lmdb format dataset required for benchmark

tink2123's avatar
tink2123 committed
38
39
If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.

WenmuZhou's avatar
WenmuZhou committed
40
<a name="Costom_Dataset"></a>
Khanh Tran's avatar
Khanh Tran committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
* Use your own dataset:

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

First put the training images in the same folder (train_images), and use a txt file (rec_gt_train.txt) to store the image path and label.

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

train_data/train_0001.jpg   简单可依赖
train_data/train_0002.jpg   用科技让复杂的世界更简单
```
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

The final training set should have the following file structure:

```
|-train_data
    |-ic15_data
        |- rec_gt_train.txt
        |- train
            |- word_001.png
            |- word_002.jpg
            |- word_003.jpg
            | ...
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
93
<a name="Dictionary"></a>
Khanh Tran's avatar
Khanh Tran committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
- Dictionary

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

`ppocr/utils/dict/japan_dict.txt` is a French dictionary with 4399 characters

`ppocr/utils/dict/korean_dict.txt` is a French dictionary with 3636 characters

`ppocr/utils/dict/german_dict.txt` is a French dictionary with 131 characters

You can use it on demand.

The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) or corpus file to [corpus](../../ppocr/utils/corpus) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
127
128
129
130


To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.

tink2123's avatar
tink2123 committed
131
132
133
134
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
135
<a name="Add_space_category"></a>
tink2123's avatar
tink2123 committed
136
137
138
139
140
141
- Add space category

If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`.

**Note: use_space_char only takes effect when character_type=ch**

WenmuZhou's avatar
WenmuZhou committed
142
<a name="TRAINING"></a>
xxxpsyduck's avatar
xxxpsyduck committed
143
### TRAINING
Khanh Tran's avatar
Khanh Tran committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar
# Decompress model parameters
cd pretrain_models
tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
```

Start training:

```
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
WenmuZhou's avatar
WenmuZhou committed
163
164
# Training icdar15 English data and saving the log as train_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
Khanh Tran's avatar
Khanh Tran committed
165
```
WenmuZhou's avatar
WenmuZhou committed
166
<a name="Data_Augmentation"></a>
tink2123's avatar
tink2123 committed
167
168
169
170
171
172
173
174
- Data Augmentation

PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.

Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)

WenmuZhou's avatar
WenmuZhou committed
175
<a name="Training"></a>
tink2123's avatar
tink2123 committed
176
177
- Training

Khanh Tran's avatar
Khanh Tran committed
178
179
180
181
182
183
184
185
186
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
WenmuZhou's avatar
WenmuZhou committed
187
188
| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
189
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
190
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
191
192
193
194
195
196
197
198
199
200
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_mv3_tps_bilstm_ctc.yml |  STARNet |   Mobilenet_v3 large 0.5 |  tps   |  BiLSTM |  ctc  |
| rec_mv3_tps_bilstm_attn.yml |  RARE |   Mobilenet_v3 large 0.5 |  tps   |  BiLSTM |  attention  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention |
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |

WenmuZhou's avatar
WenmuZhou committed
201
202
For training Chinese data, it is recommended to use
训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
co
Take `rec_mv3_none_none_ctc.yml` as an example:
```
Global:
  ...
  # Modify image_shape to fit long text
  image_shape: [3, 32, 320]
  ...
  # Modify character type
  character_type: ch
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
  ...
  # Modify reader type
  reader_yml: ./configs/rec/rec_chinese_reader.yml
218
219
220
  # Whether to use data augmentation
  distort: true
  # Whether to recognize spaces
tink2123's avatar
tink2123 committed
221
  use_space_char: true
Khanh Tran's avatar
Khanh Tran committed
222
223
224
  ...

...
225
226
227
228
229
230
231
232
233
234

Optimizer:
  ...
  # Add learning rate decay strategy
  decay:
    function: cosine_decay
    # Each epoch contains iter number
    step_each_epoch: 20
    # Total epoch number
    total_epoch: 1000
Khanh Tran's avatar
Khanh Tran committed
235
236
237
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

WenmuZhou's avatar
WenmuZhou committed
238
239
240
241
<a name="Multi_language"></a>
- Multi-language

PaddleOCR also provides multi-language. The configuration file in `configs/rec/multi_languages` provides multi-language configuration files. Currently, the multi-language algorithms supported by PaddleOCR are:
Khanh Tran's avatar
Khanh Tran committed
242

WenmuZhou's avatar
WenmuZhou committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
| Configuration file | Algorithm name | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded on [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.

If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
  # Add a custom dictionary, if you modify the dictionary
  # please point the path to the new dictionary
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  # Add data augmentation during training
  distort: true
  # Identify spaces
  use_space_char: true
  ...
  # Modify reader type
  reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
  ...
...
```
Khanh Tran's avatar
Khanh Tran committed
273

WenmuZhou's avatar
WenmuZhou committed
274
<a name="EVALUATION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
275
### EVALUATION
Khanh Tran's avatar
Khanh Tran committed
276
277
278
279
280
281

The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.

```
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
282
python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
283
284
```

WenmuZhou's avatar
WenmuZhou committed
285
<a name="PREDICTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
286
### PREDICTION
Khanh Tran's avatar
Khanh Tran committed
287

WenmuZhou's avatar
WenmuZhou committed
288
<a name="Training_engine_prediction"></a>
Khanh Tran's avatar
Khanh Tran committed
289
290
291
292
293
294
295
296
* Training engine prediction

Using the model trained by paddleocr, you can quickly get prediction through the following script.

The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
297
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
298
299
300
301
```

Input image:

302
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
303
304
305
306
307
308
309
310
311

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
     index: [19 24 18 23 29]
     word : joint
```

WenmuZhou's avatar
WenmuZhou committed
312
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
313
314
315

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
316
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
317
318
319
320
```

Input image:

321
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
322
323
324
325
326
327
328
329

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
     index: [2092  177  312 2503]
     word : 韩国小馆
```