paddleocr.cpp 7.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/args.h>
#include <include/paddleocr.h>

#include "auto_log/autolog.h"
#include <numeric>
namespace PaddleOCR {

WenmuZhou's avatar
WenmuZhou committed
22
PPOCR::PPOCR() {
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
  if (FLAGS_det) {
    this->detector_ = new DBDetector(
        FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_max_side_len,
        FLAGS_det_db_thresh, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
        FLAGS_det_db_score_mode, FLAGS_use_dilation, FLAGS_use_tensorrt,
        FLAGS_precision);
  }

  if (FLAGS_cls && FLAGS_use_angle_cls) {
    this->classifier_ = new Classifier(
        FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_cls_thresh,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_cls_batch_num);
  }
  if (FLAGS_rec) {
    this->recognizer_ = new CRNNRecognizer(
        FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_rec_char_dict_path,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
  }
};

WenmuZhou's avatar
WenmuZhou committed
46
47
void PPOCR::det(cv::Mat img, std::vector<OCRPredictResult> &ocr_results,
                std::vector<double> &times) {
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
  std::vector<std::vector<std::vector<int>>> boxes;
  std::vector<double> det_times;

  this->detector_->Run(img, boxes, det_times);

  for (int i = 0; i < boxes.size(); i++) {
    OCRPredictResult res;
    res.box = boxes[i];
    ocr_results.push_back(res);
  }

  times[0] += det_times[0];
  times[1] += det_times[1];
  times[2] += det_times[2];
}

WenmuZhou's avatar
WenmuZhou committed
64
65
66
void PPOCR::rec(std::vector<cv::Mat> img_list,
                std::vector<OCRPredictResult> &ocr_results,
                std::vector<double> &times) {
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  std::vector<std::string> rec_texts(img_list.size(), "");
  std::vector<float> rec_text_scores(img_list.size(), 0);
  std::vector<double> rec_times;
  this->recognizer_->Run(img_list, rec_texts, rec_text_scores, rec_times);
  // output rec results
  for (int i = 0; i < rec_texts.size(); i++) {
    ocr_results[i].text = rec_texts[i];
    ocr_results[i].score = rec_text_scores[i];
  }
  times[0] += rec_times[0];
  times[1] += rec_times[1];
  times[2] += rec_times[2];
}

WenmuZhou's avatar
WenmuZhou committed
81
82
83
void PPOCR::cls(std::vector<cv::Mat> img_list,
                std::vector<OCRPredictResult> &ocr_results,
                std::vector<double> &times) {
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  std::vector<int> cls_labels(img_list.size(), 0);
  std::vector<float> cls_scores(img_list.size(), 0);
  std::vector<double> cls_times;
  this->classifier_->Run(img_list, cls_labels, cls_scores, cls_times);
  // output cls results
  for (int i = 0; i < cls_labels.size(); i++) {
    ocr_results[i].cls_label = cls_labels[i];
    ocr_results[i].cls_score = cls_scores[i];
  }
  times[0] += cls_times[0];
  times[1] += cls_times[1];
  times[2] += cls_times[2];
}

std::vector<std::vector<OCRPredictResult>>
WenmuZhou's avatar
WenmuZhou committed
99
100
PPOCR::ocr(std::vector<cv::String> cv_all_img_names, bool det, bool rec,
           bool cls) {
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
  std::vector<double> time_info_cls = {0, 0, 0};
  std::vector<std::vector<OCRPredictResult>> ocr_results;

  if (!det) {
    std::vector<OCRPredictResult> ocr_result;
    // read image
    std::vector<cv::Mat> img_list;
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: "
                  << cv_all_img_names[i] << endl;
        exit(1);
      }
      img_list.push_back(srcimg);
      OCRPredictResult res;
      ocr_result.push_back(res);
    }
    if (cls && this->classifier_ != nullptr) {
      this->cls(img_list, ocr_result, time_info_cls);
      for (int i = 0; i < img_list.size(); i++) {
        if (ocr_result[i].cls_label % 2 == 1 &&
            ocr_result[i].cls_score > this->classifier_->cls_thresh) {
          cv::rotate(img_list[i], img_list[i], 1);
        }
      }
    }
    if (rec) {
      this->rec(img_list, ocr_result, time_info_rec);
    }
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result_tmp;
      ocr_result_tmp.push_back(ocr_result[i]);
      ocr_results.push_back(ocr_result_tmp);
    }
  } else {
    if (!Utility::PathExists(FLAGS_output) && FLAGS_det) {
WenmuZhou's avatar
WenmuZhou committed
140
      Utility::CreateDir(FLAGS_output);
141
142
143
144
    }

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result;
WenmuZhou's avatar
WenmuZhou committed
145
146
147
      if (!FLAGS_benchmark) {
        cout << "predict img: " << cv_all_img_names[i] << endl;
      }
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: "
                  << cv_all_img_names[i] << endl;
        exit(1);
      }
      // det
      this->det(srcimg, ocr_result, time_info_det);
      // crop image
      std::vector<cv::Mat> img_list;
      for (int j = 0; j < ocr_result.size(); j++) {
        cv::Mat crop_img;
        crop_img = Utility::GetRotateCropImage(srcimg, ocr_result[j].box);
        img_list.push_back(crop_img);
      }

      // cls
      if (cls && this->classifier_ != nullptr) {
        this->cls(img_list, ocr_result, time_info_cls);
        for (int i = 0; i < img_list.size(); i++) {
          if (ocr_result[i].cls_label % 2 == 1 &&
              ocr_result[i].cls_score > this->classifier_->cls_thresh) {
            cv::rotate(img_list[i], img_list[i], 1);
          }
        }
      }
      // rec
      if (rec) {
        this->rec(img_list, ocr_result, time_info_rec);
      }
      ocr_results.push_back(ocr_result);
    }
  }
  if (FLAGS_benchmark) {
    this->log(time_info_det, time_info_rec, time_info_cls,
              cv_all_img_names.size());
  }
  return ocr_results;
} // namespace PaddleOCR

WenmuZhou's avatar
WenmuZhou committed
189
190
void PPOCR::log(std::vector<double> &det_times, std::vector<double> &rec_times,
                std::vector<double> &cls_times, int img_num) {
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  if (det_times[0] + det_times[1] + det_times[2] > 0) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, det_times, img_num);
    autolog_det.report();
  }
  if (rec_times[0] + rec_times[1] + rec_times[2] > 0) {
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           rec_times, img_num);
    autolog_rec.report();
  }
  if (cls_times[0] + cls_times[1] + cls_times[2] > 0) {
    AutoLogger autolog_cls("ocr_cls", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_cls_batch_num, "dynamic", FLAGS_precision,
                           cls_times, img_num);
    autolog_cls.report();
  }
}
WenmuZhou's avatar
WenmuZhou committed
212
PPOCR::~PPOCR() {
213
214
215
216
217
218
219
220
221
222
223
224
  if (this->detector_ != nullptr) {
    delete this->detector_;
  }
  if (this->classifier_ != nullptr) {
    delete this->classifier_;
  }
  if (this->recognizer_ != nullptr) {
    delete this->recognizer_;
  }
};

} // namespace PaddleOCR